41 research outputs found

    Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings

    Get PDF
    In this study, the authors examined use of piezoelectric inkjet printing to apply an antifungal agent, voriconazole, to the surfaces of biodegradable polyglycolic acid microneedles. Polyglycolic acid microneedles with sharp tips (average tip radius = 25 ± 3 μm) were prepared using a combination of injection molding and drawing lithography. The elastic modulus (9.9 ± 0.3 GPa) and hardness (588.2 ± 33.8 MPa) values of the polyglycolic acid material were determined using nanoindentation and were found to be suitable for use in transdermal drug delivery devices. Voriconazole was deposited onto the polyglycolic acid microneedles by means of piezoelectric inkjet printing. It should be noted that voriconazole has poor solubility in water; however, it is readily soluble in many organic solvents. Optical imaging, scanning electron microscopy, energy dispersive x-ray spectrometry, and Fourier transform infrared spectroscopy were utilized to examine the microneedle geometries and inkjet-deposited surface coatings. F..

    Atomic layer deposition-based functionalization of materials for medical and environmental health applications

    Get PDF
    Nanoporous alumina membranes exhibit high pore densities, well-controlled and uniform pore sizes, as well as straight pores. Owing to these unusual properties, nanoporous alumina membranes are currently being considered for use in implantable sensor membranes and water purification membranes. Atomic layer deposition is a thin-film growth process that may be used to modify the pore size in a nanoporous alumina membrane while retaining a narrow pore distribution. In addition, films deposited by means of atomic layer deposition may impart improved biological functionality to nanoporous alumina membranes. In this study, zinc oxide coatings and platinum coatings were deposited on nanoporous alumina membranes by means of atomic layer deposition. PEGylated nanoporous alumina membranes were prepared by self-assembly of 1-mercaptoundec-11-yl hexa(ethylene glycol) on platinum-coated nanoporous alumina membranes. The pores of the PEGylated nanoporous alumina membranes remained free of fouling after exposure to human platelet-rich plasma; protein adsorption, fibrin networks and platelet aggregation were not observed on the coated membrane surface. Zinc oxide-coated nanoporous alumina membranes demonstrated activity against two waterborne pathogens, Escherichia coli and Staphylococcus aureus. The results of this work indicate that nanoporous alumina membranes may be modified using atomic layer deposition for use in a variety of medical and environmental health applications

    Two Photon Polymerization-Micromolding of Polyethylene Glycol-Gentamicin Sulfate Microneedles

    Get PDF
    The use of microneedles for transdermal drug delivery is limited due to the risk of infection associated with formation of channels through the stratum corneum layer of the epidermis. The risk of infection associated with use of microneedles may be reduced by imparting these devices with antimicrobial properties. In this study, a photopolymerization-micromolding technique was used to fabricate microneedle arrays from a photosensitive material containing polyethylene glycol 600 diacrylate, gentamicin sulfate, and a photoinitiator. Scanning electron microscopy indicated that the photopolymerization-micromolding process produced microneedle arrays that exhibited good microneedle-to-microneedle uniformity. An agar plating assay revealed that microneedles fabricated with polyethylene glycol 600 diacrylate containing 2 mg mL−1 gentamicin sulfate inhibited growth of Staphylococcus aureus bacteria. Scanning electron microscopy revealed no platelet aggregation on the surfaces of platelet rich plasma-exposed undoped polyethylene glycol 600 diacrylate microneedles and gentamicin-doped polyethylene glycol 600 diacrylate microneedles. These efforts will enable wider adoption of microneedles for transdermal delivery of pharmacologic agents

    Compounds from Silicones Alter Enzyme Activity in Curing Barnacle Glue and Model Enzymes

    Get PDF
    Background: Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. Methodology/Principal Findings: GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Conclusions/Significance: Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties

    Preliminary Investigation of Escherichia Coli K12 Biofilm Inhibition on an Antimicrobial Polysiloxane Coating using Whole Transcriptome Profiling

    No full text
    Whole transcriptome profiling was examined in E. coli K12 when cultured on the surface of a pure polysiloxane coating (Sil) and a polysiloxane coating containing a tethered quaternary ammonium compound (QSil) shown to inhibit biofilm formation. An optimized protocol was developed for isolating high quality RNA from the surface of these coatings prepared in multi-well plates. DNA microarray data obtained from the Sil and QSil coatings revealed that 222 genes were differentially expressed between these two surfaces by a factor of at least 2-fold and with a 90% level of confidence. Several genes of the lsr operon, which encode the various components of the AI-2 based quorum sensing system, were repressed on the QSil coating surface. The QSil coatings ability to effectively interfere with the AI-2 based quorum sensing system was most likely the primary factor that contributed to the impairment of E. coli K12 biofilm formation on that surface

    Soy-Based Soft Matrices for Encapsulation and Delivery of Hydrophilic Compounds

    No full text
    A new controlled-release platform for hydrophilic compounds has been developed, utilizing citric acid-cured epoxidized sucrose soyate (ESS) as the matrix forming material. By cross-linking epoxy groups of ESS with citric acid in the presence of a hydrophilic model molecule, sodium salt of fluorescein (Sod-FS), we were able to entrap the latter homogenously within the ESS matrix. No chemical change of the entrapped active agent was evident during the fabrication process. Hydrophobicity of the matrix was found to be the rate-limiting factor for sustaining the release of the hydrophilic model compound, while inclusion of release-modifiers such as poly(ethylene glycol) (PEG) within the matrix system modulated the rate and extent of guest release. Using 5 kDa PEG at 5% w/w of the total formulation, it was possible to extend the release of the active ingredient for more than a month. In addition, the amount of modifiers in formulations also influenced the mechanical properties of the matrices, including loss and storage modulus. Mechanism of active release from ESS matrices was also evaluated using established kinetic models. Formulations composed entirely of ESS showed a non-Fickian (anomalous) release behavior while Fickian (Case I) transport was the predominant mechanism of active release from ESS systems containing different amount of PEGs. The mean dissolution time (MDT) of the hydrophilic guest molecule from within the ESS matrix was found to be a function of the molecular weight and the amount of PEG included. At the molecular level, we observed no cellular toxicities associated with ESS up to a concentration level of 10 μM. We envision that such fully bio-based matrices can find applications in compounding point-of-care, extended-release formulations of highly water-soluble active agents

    Micromolding of Amphotericin-B-Loaded Methoxyethylene–Maleic Anhydride Copolymer Microneedles

    No full text
    Biocompatible and biodegradable materials have been used for fabricating polymeric microneedles to deliver therapeutic drug molecules through the skin. Microneedles have advantages over other drug delivery methods, such as low manufacturing cost, controlled drug release, and the reduction or absence of pain. The study examined the delivery of amphotericin B, an antifungal agent, using microneedles that were fabricated using a micromolding technique. The microneedle matrix was made from GantrezTM AN-119 BF, a benzene-free methyl vinyl ether/maleic anhydride copolymer. The GantrezTM AN-119 BF was mixed with water; after water evaporation, the polymer exhibited sufficient strength for microneedle fabrication. Molds cured at room temperature remained sharp and straight. SEM images showed straight and sharp needle tips; a confocal microscope was used to determine the height and tip diameter for the microneedles. Nanoindentation was used to obtain the hardness and Young’s modulus values of the polymer. Load–displacement testing was used to assess the failure force of the needles under compressive loading. These two mechanical tests confirmed the mechanical properties of the needles. In vitro studies validated the presence of amphotericin B in the needles and the antifungal properties of the needles. Amphotericin B GantrezTM microneedles fabricated in this study showed appropriate characteristics for clinical translation in terms of mechanical properties, sharpness, and antifungal properties

    Anti-Coagulant and Antimicrobial Recombinant Heparin-Binding Major Ampullate Spidroin 2 (MaSp2) Silk Protein

    No full text
    Governed by established structure–property relationships, peptide motifs comprising major ampullate spider silk confer a balance of strength and extensibility. Other biologically inspired small peptide motifs correlated to specific functionalities can be combined within these units to create designer silk materials with new hybrid properties. In this study, a small basic peptide, (ARKKAAKA) known to both bind heparin and mimic an antimicrobial peptide, was genetically linked to a protease-resistant, mechanically robust silk-like peptide, MaSp2. Purified fusion proteins (four silk domains and four heparin-binding peptide repeats) were expressed in E. coli. Successful fusion of a MaSp2 spider silk peptide with the heparin-binding motif was shown using a variety of analytical assays. The ability of the fusion peptide to bind heparin was assessed with ELISA and was further tested for its anticoagulant property using aPTT assay. Its intrinsic property to inhibit bacterial growth was evaluated using zone of inhibition and crystal violet (CV) assays. Using this strategy, we were able to link the two types of genetic motifs to create a designer silk-like protein with improved hemocompatibility and antimicrobial properties

    Projected impact of climate change on the effectiveness of the existing protected area network for biodiversity conservation within Yunnan Province, China

    No full text
    Climate change is projected to impact on biodiversity conservation and the effectiveness of the existing protected area network in biologically rich Yunnan Province of southwestern China. A statistically derived bioclimatic stratification is used to analyze projected bioclimatic conditions across Yunnan by the year 2050. The multi-model approach is based on an ensemble of CIMP5 Earth System Models, downscaled to a set of 1 km2 resolution climate projections (n = 63), covering four representative concentration pathways (RCP). Nine bioclimatic zones, composed of 33 strata, are currently found within Yunnan. By 2050, the mean elevation of these zones is projected to shift upwards by an average of 269 m, with large increases in area of the warmer zones, and decreases in the colder, higher elevation zones. Temperate and alpine areas of high biodiversity value are at risk. Displacement in the geographic distribution of bioclimatic conditions is likely to have substantial impact across all bioclimatic zones, vegetation types, and habitats currently found in Yunnan. On average, across all RCPs, 45% of the total combined area of the protected area network will shift to a completely different zone, with 83% shifting to a different strata. The great majority of protected area will experience substantially changed, spatially shifted, and novel bioclimatic conditions by 2050. The spatial displacement and upwards shifting of bioclimatic conditions indicates a prolonged period of significant ecological perturbation, which will have a major impact upon the conservation effectiveness of the established protected area network, and other conservation efforts across Yunnan
    corecore