4,590 research outputs found

    Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Get PDF
    Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Clouds Experiment-Layer Clouds (ICE-L) in the fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5% water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07% of the particles with diameters greater than 500 nm

    The Cold and Hot Gas Content of Fine-Structure E and S0 Galaxies

    Full text link
    We investigate trends of the cold and hot gas content of early-type galaxies with the presence of optical morphological peculiarities, as measured by the fine-structure index (Sigma). HI mapping observations from the literature are used to track the cold-gas content, and archival ROSAT PSPC data are used to quantify the hot-gas content. We find that E and S0 galaxies with a high incidence of optical peculiarities are exclusively X-ray underluminous and, therefore, deficient in hot gas. In contrast, more relaxed galaxies with little or no signs of optical peculiarities span a wide range of X-ray luminosities. That is, the X-ray excess anticorrelates with Sigma. There appears to be no similar trend of cold-gas content with either fine-structure index or X-ray content. The fact that only apparently relaxed E and S0 galaxies are strong X-ray emitters is consistent with the hypothesis that after strong disturbances such as a merger hot-gas halos build up over a time scale of several gigayears. This is consistent with the expected mass loss from stars.Comment: 12 pages, latex, 5 figures. Accepted for publication in A

    Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning

    Get PDF
    Sonic hedgehog (Shh) acts as a morphogen to mediate the specification of distinct cell identities in the ventral neural tube through a Gli-mediated (Gli1-3) transcriptional network. Identifying Gli targets in a systematic fashion is central to the understanding of the action of Shh. We examined this issue in differentiating neural progenitors in mouse. An epitope-tagged Gli-activator protein was used to directly isolate cis-regulatory sequences by chromatin immunoprecipitation (ChIP). ChIP products were then used to screen custom genomic tiling arrays of putative Hedgehog (Hh) targets predicted from transcriptional profiling studies, surveying 50-150 kb of non-transcribed sequence for each candidate. In addition to identifying expected Gli-target sites, the data predicted a number of unreported direct targets of Shh action. Transgenic analysis of binding regions in Nkx2.2, Nkx2.1 (Titf1) and Rab34 established these as direct Hh targets. These data also facilitated the generation of an algorithm that improved in silico predictions of Hh target genes. Together, these approaches provide significant new insights into both tissue-specific and general transcriptional targets in a crucial Shh-mediated patterning process

    An inner ring and the micro lensing toward the Bulge

    Get PDF
    All current Bulge-Disk models for the inner Galaxy fall short of reproducing self-consistently the observed micro-lensing optical depth by a factor of two (>2σ> 2\sigma). We show that the least mass-consuming way to increase the optical depth is to add density roughly half-way the observer and the highest micro-lensing-source density. We present evidence for the existence of such a density structure in the Galaxy: an inner ring, a standard feature of barred galaxies. Judging from data on similar rings in external galaxies, an inner ring can contribute more than 50% of a pure Bulge-Disk model to the micro-lensing optical depth. We may thus eliminate the need for a small viewing angle of the Bar. The influence of an inner ring on the event-duration distribution, for realistic viewing angles, would be to increase the fraction of long-duration events toward Baade's window. The longest events are expected toward the negative-longitude tangent point at ℓ∌\ell\sim -22\degr . A properly sampled event-duration distribution toward this tangent point would provide essential information about viewing angle and elongation of the over-all density distribution in the inner Galaxy.Comment: 9 pages, 7(15) figs, LaTeX, AJ (accepted

    Using binary stars to bound the mass of the graviton

    Get PDF
    Interacting white dwarf binary star systems, including helium cataclysmic variable (HeCV) systems, are expected to be strong sources of gravitational radiation, and should be detectable by proposed space-based laser interferometer gravitational wave observatories such as LISA. Several HeCV star systems are presently known and can be studied optically, which will allow electromagnetic and gravitational wave observations to be correlated. Comparisons of the phases of a gravitational wave signal and the orbital light curve from an interacting binary white dwarf star system can be used to bound the mass of the graviton. Observations of typical HeCV systems by LISA could potentially yield an upper bound on the inverse mass of the graviton as strong as h/mg=λg>1×1015h/m_{g} = \lambda_{g} > 1 \times 10^{15} km (mg<1×10−24m_{g} < 1 \times 10^{-24} eV), more than two orders of magnitude better than present solar system derived bounds.Comment: 21 pages plus 4 figures; ReVTe

    Comparison of Two Methods for Quantifying Northern Bobwhite Habitat Use

    Get PDF
    Habitat use is an important ecological parameter that is used to make informed decisions about quail management and research. Statistical methods for quantifying habitat use are numerous, but few objective criteria are available to support the selection of a particular analytical approach. Therefore, we compared breeding season habitat use by radio-marked northern bobwhites (Colinus virginianus) at 2 study sites in Mississippi with 2 widely used statistical methods; Chi-square goodness-of-fit test with Bonferroni confidence intervals, and compositional analysis. These statistical methods produced similar results for both study areas; however, more detailed habitat use information was provided by compositional analysis when performed using the customary hierarchical approach. Therefore, for analysis of radio-marked quail, we recommend this method due to its effective hierarchical approach, improved statistical validity, and ability to incorporate other population parameters (e.g .. survival) into statistical models of habitat use by northern bobwhites

    Astrophysical Bounds on Global Strings

    Get PDF
    Global topological defects produce nonzero stress-energy throughout spacetime, and as a result can have observable gravitational influence on surrounding matter. Gravitational effects of global strings are used to place bounds on their cosmic abundance. The minimum separation between global strings is estimated by considering the defects' contribution to the cosmological energy density. More rigorous constraints on the abundance of global strings are constructed by examining the tidal forces such defects will have on observable astrophysical systems. The small number of observed tidally disrupted systems indicates there can be very few of these objects in the observable universe.Comment: 14 pages, REVTe

    The H alpha Galaxy Survey. IV. Star formation in the local Universe

    Full text link
    We present an analysis of the star formation properties of field galaxies within the local volume out to a recession velocity limit of 3000 km/s. A parent sample of 863 star-forming galaxies is used to calculate a B-band luminosity function. This is then populated with star formation information from a subsample of 327 galaxies, for which we have H alpha imaging, firstly by calibrating a relationship between galaxy B-band luminosity and star formation rate, and secondly by a Monte Carlo simulation of a representative sample of galaxies, in which star formation information is randomly sampled from the observed subset. The total star formation rate density of the local Universe is found to be between 0.016 and 0.023 MSun/yr/cubic Mpc, with the uncertainties being dominated by the internal extinction correction used in converting measured H alpha fluxes to star formation rates. If our internally derived B-band luminosity function is replaced by one from the Sloan Digital Sky Survey blue sequence, the star formation rate densities are approx. 60% of the above values. We also calculate the contribution to the total star formation rate density from galaxies of different luminosities and Hubble T-types. The largest contribution comes from bright galaxies with B absolute mag of approx. -20 mag, and the total contribution from galaxies fainter than -15.5 mag is less than 10%. Almost 60% of the star formation rate density comes from galaxies of types Sb, Sbc or Sc; 9% from galaxies earlier than Sb and 33% from galaxies later than Sc. Finally, 75 - 80% of the total star formation in the local Universe is shown to be occurring in disk regions, defined as being >1 kpc from the centres of galaxies.Comment: 12 pages, accepted for publication in Astronomy and Astrophysic

    Semiclassical effects in black hole interiors

    Get PDF
    First-order semiclassical perturbations to the Schwarzschild black hole geometry are studied within the black hole interior. The source of the perturbations is taken to be the vacuum stress-energy of quantized scalar, spinor, and vector fields, evaluated using analytic approximations developed by Page and others (for massless fields) and the DeWitt-Schwinger approximation (for massive fields). Viewing the interior as an anisotropic collapsing cosmology, we find that minimally or conformally coupled scalar fields, and spinor fields, decrease the anisotropy as the singularity is approached, while vector fields increase the anisotropy. In addition, we find that massless fields of all spins, and massive vector fields, strengthen the singularity, while massive scalar and spinor fields tend to slow the growth of curvature.Comment: 29 pages, ReVTeX; 4 ps figure

    The Role of Entrepreneur-Venture Fit in Online Home-based Entrepreneurship: A Systematic Literature Review

    Get PDF
    Home-based businesses and their founders represent an important, but under-researched facet of entrepreneurship. Far from being small, hobby-businesses with little economic impact, home-based business make significant contribution to national economies in terms of both turnover and employment. Online home-based businesses have been recognised as an important and distinct sector of the home-based business domain, offering unique opportunity for innovation and business diversity. The paper presents a systematic literature review of extant research on online home-based entrepreneurs and their businesses. The findings of the review are structured and discussed using the theoretical lens of entrepreneur-venture fit. Use of this lens allows the study to bring coherence to previously fragmented extant studies, providing a basis for future research in this domain. The study also develops a novel model of entrepreneur-venture fit in the specific case of online home-based businesses. This allows us to suggest five positive interactions between entrepreneurial and venture characteristics. It also allows us to suggest a number of previously unidentified negative interactions, which may result in entrepreneurs becoming ‘locked-in’ and suffering multiple sources of stress
    • 

    corecore