71 research outputs found
The Hotdog fold: wrapping up a superfamily of thioesterases and dehydratases
BACKGROUND: The Hotdog fold was initially identified in the structure of Escherichia coli FabA and subsequently in 4-hydroxybenzoyl-CoA thioesterase from Pseudomonas sp. strain CBS. Since that time structural determinations have shown a number of other apparently unrelated proteins also share the Hotdog fold. RESULTS: Using sequence analysis we unify a large superfamily of HotDog domains. Membership includes numerous prokaryotic, archaeal and eukaryotic proteins involved in several related, but distinct, catalytic activities, from metabolic roles such as thioester hydrolysis in fatty acid metabolism, to degradation of phenylacetic acid and the environmental pollutant 4-chlorobenzoate. The superfamily also includes FapR, a non-catalytic bacterial homologue that is involved in transcriptional regulation of fatty acid biosynthesis. We have defined 17 subfamilies, with some characterisation. Operon analysis has revealed numerous HotDog domain-containing proteins to be fusion proteins, where two genes, once separate but adjacent open-reading frames, have been fused into one open-reading frame to give a protein with two functional domains. Finally we have generated a Hidden Markov Model library from our analysis, which can be used as a tool for predicting the occurrence of HotDog domains in any protein sequence. CONCLUSIONS: The HotDog domain is both an ancient and ubiquitous motif, with members found in the three branches of life
Genomic Approaches Uncover Increasing Complexities in the Regulatory Landscape at the Human SCL (TAL1) Locus
The SCL (TAL1) transcription factor is a critical regulator of haematopoiesis and its expression is tightly controlled by multiple cis-acting regulatory elements. To elaborate further the DNA elements which control its regulation, we used genomic tiling microarrays covering 256 kb of the human SCL locus to perform a concerted analysis of chromatin structure and binding of regulatory proteins in human haematopoietic cell lines. This approach allowed us to characterise further or redefine known human SCL regulatory elements and led to the identification of six novel elements with putative regulatory function both up and downstream of the SCL gene. They bind a number of haematopoietic transcription factors (GATA1, E2A LMO2, SCL, LDB1), CTCF or components of the transcriptional machinery and are associated with relevant histone modifications, accessible chromatin and low nucleosomal density. Functional characterisation shows that these novel elements are able to enhance or repress SCL promoter activity, have endogenous promoter function or enhancer-blocking insulator function. Our analysis opens up several areas for further investigation and adds new layers of complexity to our understanding of the regulation of SCL expression
Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution
It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing
Marketing (as) Rhetoric: paradigms, provocations, and perspectives
In this collection of short, invited essays on the topic of marketing (as) rhetoric we deal with a variety of issues that demonstrate the centrality of rhetoric and rhetorical considerations to the pursuit of marketing scholarship, research and practice. Stephen Brown examines the enduring rhetorical power of the 4Ps; Chris Hackley argues for the critical power of rhetorical orientations in marketing scholarship but cautions us on the need to work harder in conceptually connecting rhetorical theory and modern marketing frameworks; Shelby Hunt explains how rhetorical processes are incorporated in his inductive realist model of theory generation, using one of his most successful publications as an illustration; Charles Marsh demonstrates what Isocrates’ broad rhetorical project has to teach us about the importance of reputation cultivation in modern marketing; Nicholas O’Shaughnessy uses an analysis of Trump’s discourse to argue that political marketing as it is currently conceived is ill-equipped to engage effectively with the rhetorical force of Trump’s ‘unmarketing’; Barbara Phillips uses Vygotsky’s work on imagination to investigate the important of pleasure and play in advertising rhetoric; and finally, David Tonks, who in many ways started it all, reiterates the need for marketers to recognise the strength of the relationship between marketing and persuasion
Low frequency observations of linearly polarized structures in the interstellar medium near the south Galactic pole
This is an author-created, un-copyedited version of an article published in The Astrophysical Journal. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.3847/0004-637X/830/1/38We present deep polarimetric observations at 154 MHz with the Murchison Widefield Array (MWA), covering 625 deg^2 centered on RA=0 h, Dec=-27 deg. The sensitivity available in our deep observations allows an in-band, frequency-dependent analysis of polarized structure for the first time at long wavelengths. Our analysis suggests that the polarized structures are dominated by intrinsic emission but may also have a foreground Faraday screen component. At these wavelengths, the compactness of the MWA baseline distribution provides excellent snapshot sensitivity to large-scale structure. The observations are sensitive to diffuse polarized emission at ~54' resolution with a sensitivity of 5.9 mJy beam^-1 and compact polarized sources at ~2.4' resolution with a sensitivity of 2.3 mJy beam^-1 for a subset (400 deg^2) of this field. The sensitivity allows the effect of ionospheric Faraday rotation to be spatially and temporally measured directly from the diffuse polarized background. Our observations reveal large-scale structures (~1 deg - 8 deg in extent) in linear polarization clearly detectable in ~2 minute snapshots, which would remain undetectable by interferometers with minimum baseline lengths >110 m at 154 MHz. The brightness temperature of these structures is on average 4 K in polarized intensity, peaking at 11 K. Rotation measure synthesis reveals that the structures have Faraday depths ranging from -2 rad m^-2 to 10 rad m^-2 with a large fraction peaking at ~+1 rad m^-2. We estimate a distance of 51+/-20 pc to the polarized emission based on measurements of the in-field pulsar J2330-2005. We detect four extragalactic linearly polarized point sources within the field in our compact source survey. Based on the known polarized source population at 1.4 GHz and non-detections at 154 MHz, we estimate an upper limit on the depolarization ratio of 0.08 from 1.4 GHz to 154 MHz.Peer reviewedFinal Accepted Versio
Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view about chromatin structure has emerged, including its interrelationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded novel mechanistic and evolutionary insights about the functional landscape of the human genome. Together, these studies are defining a path forward to pursue a more-comprehensive characterisation of human genome function
Epidemiology of facial fractures: Incidence, prevalence and years lived with disability estimates from the Global Burden of Disease 2017 study
Background: The Global Burden of Disease Study (GBD) has historically produced estimates of causes of injury such as falls but not the resulting types of injuries that occur. The objective of this study was to estimate the global incidence, prevalence and years lived with disability (YLDs) due to facial fractures and to estimate the leading injurious causes of facial fracture. Methods: We obtained results from GBD 2017. First, the study estimated the incidence from each injury cause (eg, falls), and then the proportion of each cause that would result in facial fracture being the most disabling injury. Incidence, prevalence and YLDs of facial fractures are then calculated across causes. Results: Globally, in 2017, there were 7 538 663 (95% uncertainty interval 6 116 489 to 9 4
- …