907 research outputs found

    Self-Assembling Peptides as Potential Carriers for the Delivery of the Hydrophobic Anticancer Agent Ellipticine

    Get PDF
    Self-assembling peptides have emerged as new nanobiomaterials in the areas of nanoscience and biomedical engineering. In this category are self-assembling, ionic-complementary peptides, which contain a repeating charge distribution and alternating hydrophobic and hydrophilic residues in the amino acid sequence, leading to a unique combination of amphiphilicity and ionic complementarity. These peptides can self-assemble into stable nanostructures or macroscopic membranes that can withstand conditions of high temperature, extreme pH, many digesting enzymes and denaturation agents. Moreover, they exhibit good biocompatibility with various cultured mammalian cells, and do not have detectable immune responses when introduced into animals. These properties make them ideal materials for tissue scaffolding, regenerative medicine and drug delivery. This thesis focuses on the utilization of self-assembling peptides for hydrophobic anticancer drug delivery. The hydrophobic anticancer agent ellipticine was selected as a model drug. The studies include: (i) characterization of the photophysical properties of ellipticine in different environments; (ii) study of the formation of peptide-ellipticine complexes and the release kinetics; (iii) investigation of the cellular toxicity of the complexes and ellipticine uptake; (iv) study of the peptide sequence effect on the complex formation and in vitro delivery. Prior to applying ellipticine to the peptide-based delivery system, the fundamental studies on the effect of solution conditions, especially solvent polarity and hydrogen bonding, on the fluorescence of ellipticine were carried out. Ultraviolet (UV) absorption and fluorescence emission of ellipticine were found to be solvent/environment dependent. The absorption and emission maxima shifted to higher wavelengths (red shift) with increased solvent polarity. Large Stokes’ shifts were due to intramolecular charge transfer (ICT), which was enabled by large solvent polarity and hydrogen bonding of ellipticine with the solvents. The photophysical response of ellipticine to changes in solvent polarity and hydrogen bond formation could be used to infer the location of ellipticine in a heterogeneous medium, such as liposomes and cultured cells. EAK16-II, a model self-assembling peptide, was found to be able to stabilize ellipticine in aqueous solution. The equilibration time required to form peptide-ellipticine complex suspensions was found to be peptide concentration-dependent and related to the peptide critical aggregation concentration (CAC, ~0.1 mg/mL). With different combinations of EAK16-II and ellipticine concentrations, two molecular states (protonated or crystalline) of ellipticine could be obtained in the complexes. The release kinetics of ellipticine from the complex into egg phosphatidylcholine (EPC) vesicles (cell membrane mimics) was also affected by the peptide concentration used in the drug formulation. A higher peptide concentration resulted in a faster transfer rate, in relation to the size of the resulting complexes. Subsequent cellular studies on two cancer cell lines, A549 and MCF-7, showed that the complexes with protonated ellipticine were more effective against both cell lines, but their dilutions were not very stable. In addition, it was found that ellipticine uptake in both cell lines was very fast and through direct membrane permeation. Three peptides, EAK16-II, EAK16-IV and EFK16-II, either having a different charge distribution (EAK16-II vs. EAK16-IV) or hydrophobicity (EAK16-II vs. EFK16-II), were tested for the complexation and in vitro delivery of ellipticine. It was found that EAK16-II and EAK16-IV were able to stabilize protonated or crystalline ellipticine depending on the peptide concentration; EFK16-II, on the other hand, could stabilize neutral ellipticine molecules and ellipticine (micro)crystals. The viability results showed that the charge distribution of the peptides seemed not to affect the complex formation and its therapeutic efficacy in vitro; however, the increase in hydrophobicity of the peptides significantly altered the states of stabilized ellipticine and increased the stability of the complexes. This work provides essential information for peptide sequence design in the development of self-assembling peptide-based delivery of hydrophobic anticancer drugs

    Prenatal diagnosis and molecular cytogenetic characterization of de novo partial monosomy 3p (3p26.3→pter) and partial trisomy 16q (16q23.1→qter)

    Get PDF
    AbstractObjectiveTo present the prenatal diagnosis and molecular cytogenetic characterization of a de novo unbalanced reciprocal translocation.Case ReportA 37-year-old woman, G3P1, underwent amniocentesis at 17 weeks of gestation because of her advanced maternal age. Her husband was 38 years old. Amniocentesis revealed a derivative chromosome 3 with the deletion of terminal 3p and the addendum of an unknown extra chromosomal segment on the distal 3p. The parental karyotypes were normal. Prenatal ultrasound findings were unremarkable. Array comparative genomic hybridization (aCGH) analysis using cultured amniocytes revealed a 2.38-Mb deletion in 3p26.3 [arr 3p26.3 (1-2,380,760)×1] encompassing 15 genes, which included 3 OMIM genes CHL1, CNTN6, and CNTN4, and a 13.17-Mb duplication in 16q23.1-q24.3 [arr 16q23.1q24.3 (76,999,082-90,170,596)×3] encompassing 207 genes, which included 81 OMIM genes. The pregnancy was subsequently terminated, and a malformed fetus was delivered with facial dysmorphism. Postnatal cord blood analysis revealed a karyotype of 46,XY,der(3)t(3;16)(p26.3;q23.1)dn. Polymorphic DNA marker analysis by quantitative fluorescent polymerase chain reaction (QF-PCR) on the DNAs extracted from the placenta and parental blood showed a paternal origin of the aberrant chromosome.ConclusionThe aCGH and QF-PCR analyses helped in delineating the genomic imbalance and parental origin of prenatally detected de novo unbalanced reciprocal translocation

    Genome of the rams horn snail Biomphalaria straminea : an obligate intermediate host of schistosomiasis

    Get PDF
    This work was supported by the Hong Kong Research Grant Council Collaborative Research Fund (C4015-20EF), General Research Fund (14100919), NSFC/RGC Joint Research Scheme (N_CUHK401/21), and The Chinese University of Hong Kong Direct Grant (4053433, 4053489). Y.Y., W.L.S., C.F.W., S.T.S.L., and Y.L. were supported by the Ph.D. studentships of The Chinese University of Hong Kong. A.H. is supported by a Biotechnology and Biological Sciences Research Council (BBSRC) David Phillips Fellowship (BB/N020146/1). T.B. is supported by a studentship from the Biotechnology and Biological Sciences Research Council-funded South West Biosciences Doctoral Training Partnership (BB/M009122/1). M.E.A.R. is supported by a Ph.D. studentship from the School of Biology and St Andrews University.Background: Schistosomiasis, or bilharzia, is a parasitic disease caused by trematode flatworms of the genus Schistosoma. Infection by Schistosoma mansoni in humans results when cercariae emerge into water from freshwater snails in the genus Biomphalaria and seek out and penetrate human skin. The snail Biomphalaria straminea is native to South America and is now also present in Central America and China, and represents a potential vector host for spreading schistosomiasis. To date, genomic information for the genus is restricted to the neotropical species Biomphalaria glabrata. This limits understanding of the biology and management of other schistosomiasis vectors, such as B. straminea. Findings: Using a combination of Illumina short‐read, 10X Genomics linked‐read, and Hi‐C sequencing data, our 1.005 Gb B. straminea genome assembly is of high contiguity, with a scaffold N50 of 25.3 Mb. Transcriptomes from adults were also obtained. Developmental homeobox genes, hormonal genes, and stress-response genes were identified, and repeat content was annotated (40.68% of genomic content). Comparisons with other mollusc genomes (including Gastropoda, Bivalvia, and Cephalopoda) revealed syntenic conservation, patterns of homeobox gene linkage indicative of evolutionary changes to gene clusters, expansion of heat shock protein genes, and the presence of sesquiterpenoid and cholesterol metabolic pathway genes in Gastropoda. In addition, hormone treatment together with RT-qPCR assay reveal a sesquiterpenoid hormone responsive system in B. straminea, illustrating that this renowned insect hormonal system is also present in the lophotrochozoan lineage. Conclusion: This study provides the first genome assembly for the snail B. straminea and offers an unprecedented opportunity to address a variety of phenomena related to snail vectors of schistosomiasis, as well as evolutionary and genomics questions related to molluscs more widely.Publisher PDFPeer reviewe

    56.産褥貧血とその処置(第610回千葉医学会例会・昭和54年度産科婦人科分科会)

    Get PDF
    <p><b>Seasonal dynamics of (A, B) PEUE and (C, D) PNUE of alien <i>Sonneratia</i> and native mangrove species.</b> Fig 6 legend: Error bars represent ±1 SE.</p

    Sequence Effect of Self-Assembling Peptides on the Complexation and In Vitro Delivery of the Hydrophobic Anticancer Drug Ellipticine

    Get PDF
    A special class of self-assembling peptides has been found to be capable of stabilizing the hydrophobic anticancer agent ellipticine in aqueous solution. Here we study the effect of peptide sequence on the complex formation and its anticancer activity in vitro. Three peptides, EAK16-II, EAK16-IV and EFK16-II, were selected to have either a different charge distribution (EAK16-II vs. EAK16-IV) or a varying hydrophobicity (EAK16-II vs. EFK16-II). Results on their complexation with ellipticine revealed that EAK16-II and EAK16-IV were able to stabilize protonated ellipticine or ellipticine microcrystals depending on the peptide concentration; EFK16-II could stabilize neutral ellipticine molecules and ellipticine microcrystals. These different molecular states of ellipticine were expected to affect ellipticine delivery. The anticancer activity of these complexes was tested against two cancer cell lines: A549 and MCF-7, and related to the cell viability. The viability results showed that the complexes with protonated ellipticine were effective in eradicating both cancer cells (viability <0.05), but their dilutions in water were not stable, leading to a fast decrease in their toxicity. In contrast, the complexes formulated with EFK16-II were relatively stable upon dilution, but their original toxicity was relatively low compared to that with protonated ellipticine. Overall, the charge distribution of the peptides seemed not to affect the complex formation and its therapeutic efficacy in vitro; however, the increase in hydrophobicity of the peptides significantly altered the state of stabilized ellipticine and increased the stability of the complexes. This work provides essential information for peptide sequence design in the development of self-assembling peptide-based delivery of hydrophobic anticancer drugs

    Modification of Hydrophilic and Hydrophobic Surfaces Using an Ionic-Complementary Peptide

    Get PDF
    Ionic-complementary peptides are novel nano-biomaterials with a variety of biomedical applications including potential biosurface engineering. This study presents evidence that a model ionic-complementary peptide EAK16-II is capable of assembling/coating on hydrophilic mica as well as hydrophobic highly ordered pyrolytic graphite (HOPG) surfaces with different nano-patterns. EAK16-II forms randomly oriented nanofibers or nanofiber networks on mica, while ordered nanofibers parallel or oriented 60° or 120° to each other on HOPG, reflecting the crystallographic symmetry of graphite (0001). The density of coated nanofibers on both surfaces can be controlled by adjusting the peptide concentration and the contact time of the peptide solution with the surface. The coated EAK16-II nanofibers alter the wettability of the two surfaces differently: the water contact angle of bare mica surface is measured to be <10°, while it increases to 20.3±2.9° upon 2 h modification of the surface using a 29 µM EAK16-II solution. In contrast, the water contact angle decreases significantly from 71.2±11.1° to 39.4±4.3° after the HOPG surface is coated with a 29 µM peptide solution for 2 h. The stability of the EAK16-II nanofibers on both surfaces is further evaluated by immersing the surface into acidic and basic solutions and analyzing the changes in the nanofiber surface coverage. The EAK16-II nanofibers on mica remain stable in acidic solution but not in alkaline solution, while they are stable on the HOPG surface regardless of the solution pH. This work demonstrates the possibility of using self-assembling peptides for surface modification applications

    The association of RANTES polymorphism with severe acute respiratory syndrome in Hong Kong and Beijing Chinese

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemokines play important roles in inflammation and antiviral action. We examined whether polymorphisms of <it>RANTES, IP-10 </it>and <it>Mig </it>affect the susceptibility to and outcome of severe acute respiratory syndrome (SARS).</p> <p>Methods</p> <p>We tested the polymorphisms of <it>RANTES, IP-10 </it>and <it>Mig </it>for their associations with SARS in 495 Hong Kong Chinese SARS patients and 578 controls. Then we tried to confirm the results in 356 Beijing Chinese SARS patients and 367 controls.</p> <p>Results</p> <p><it>RANTES </it>-28 G allele was associated with SARS susceptibility in Hong Kong Chinese (<it>P </it>< 0.0001, OR = 2.80, 95%CI:2.11–3.71). Individuals with <it>RANTES </it>-28 CG and GG genotypes had a 3.28-fold (95%CI:2.32–4.64) and 3.06-fold (95%CI:1.47–6.39) increased risk of developing SARS respectively (<it>P </it>< 0.0001). This -28 G allele conferred risk of death in a gene-dosage dependent manner (<it>P </it>= 0.014) with CG and GG individuals having a 2.12-fold (95% CI: 1.11–4.06) and 4.01-fold (95% CI: 1.30–12.4) increased risk. For the replication of <it>RANTES </it>data in Beijing Chinese, the -28 G allele was not associated with susceptibility to SARS. However, -28 CG (OR = 4.27, 95%CI:1.64–11.1) and GG (OR = 3.34, 95%CI:0.37–30.7) were associated with admission to intensive care units or death due to SARS (<it>P </it>= 0.011).</p> <p>Conclusion</p> <p><it>RANTES </it>-28 G allele plays a role in the pathogenesis of SARS.</p

    The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens

    Get PDF
    © 2014 The Authors. Published by Elsevier Inc. Background A sequenced house dust mite (HDM) genome would advance our understanding of HDM allergens, a common cause of human allergies. Objective We sought to produce an annotated Dermatophagoides farinae draft genome and develop a combined genomic-transcriptomic-proteomic approach for elucidation of HDM allergens. Methods A D farinae draft genome and transcriptome were assembled with high-throughput sequencing, accommodating microbiome sequences. The allergen gene structures were validated by means of Sanger sequencing. The mite's microbiome composition was determined, and the predominant genus was validated immunohistochemically. The allergenicity of a ubiquinol-cytochrome c reductase binding protein homologue was evaluated with immunoblotting, immunosorbent assays, and skin prick tests. Results The full gene structures of 20 canonical allergens and 7 noncanonical allergen homologues were produced. A novel major allergen, ubiquinol-cytochrome c reductase binding protein-like protein, was found and designated Der f 24. All 40 sera samples from patients with mite allergy had IgE antibodies against rDer f 24. Of 10 patients tested, 5 had positive skin reactions. The predominant bacterial genus among 100 identified species was Enterobacter (63.4%). An intron was found in the 13.8-kDa D farinae bacteriolytic enzyme gene, indicating that it is of HDM origin. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed a phototransduction pathway in D farinae, as well as thiamine and amino acid synthesis pathways, which is suggestive of an endosymbiotic relationship between D farinae and its microbiome. Conclusion An HDM genome draft produced from genomic, transcriptomic, and proteomic experiments revealed allergen genes and a diverse endosymbiotic microbiome, providing a tool for further identification and characterization of HDM allergens and development of diagnostics and immunotherapeutic vaccines.Link_to_subscribed_fulltex
    corecore