10,839 research outputs found

    Preparation and Mechanism of a New Enhanced Flocculant Based on Bentonite for Drinking Water

    Get PDF
    Bentonite is characterized by the large specific surface, good adsorption, ion exchange ability, and nontoxicity. An enhanced bentonite base composite flocculant (BTA) can be prepared from treating the calcium base bentonite and compositing various functional additives. Bentonite was firstly treated by citric acid, then the talc and activated carbon turned to be acid part and simultaneously the part that was treated by sodium bicarbonate and calcium hydroxide turned to be alkaline part, and finally the acid bentonite part and alkaline bentonite part were mixed up with preground powder of polymeric chloride aluminium (PAC), cationic polyacrylamide (CPAM), ferrous sulfate, and aluminum sulfate, and after all of the processing flocculant BTA was obtained. The optimum preparation process of flocculant BTA has shown 29.5% acid bentonite part, 29.5% alkaline bentonite part, 15% PAC, 1% CPAM, 5% ferrous sulfate, and 20% aluminum sulfate. BTA was used to treat drinking water with high turbidity and metal ion in Karamay City, Xinjiang. The treated water was surely up to the drinking water standard of China in decolorization rate, deodorization rate, heavy metal ion removal rate, and so forth, and contents of residual aluminum ions and acrylamide monomer in drinking water were considerably decreased

    Simultaneous estimation of elasticity for multiple deformable bodies: Simultaneous estimation of elasticity for multiple deformable bodies

    Get PDF
    Material property has great importance in deformable body simulation and medical robotics. The elasticity parameters, such as Young’s modulus of the deformable bodies, are important to make realistic animations. Further in medical applications the (recovered) elasticity parameters can assist surgeons to perform better pre-op surgical planning and enable medical robots to carry out personalized surgical procedures. Previous elasticity parameters estimation methods are limited to recover one elasticity parameter of one deformable body at a time. In this paper, we propose a novel elasticity parameter estimation algorithm that can recover the elasticity parameters of multiple deformable bodies or multiple regions of one deformable body simultaneously from (at least two sets of) images. We validate our algorithm with both synthetic test cases and real patient CT images

    A Message Passing Detection based Affine Frequency Division Multiplexing Communication System

    Full text link
    The next generation of wireless communication technology is anticipated to address the communication reliability challenges encountered in high-speed mobile communication scenarios. An Orthogonal Time Frequency Space (OTFS) system has been introduced as a solution that effectively mitigates these issues. However, OTFS is associated with relatively high pilot overhead and multiuser multiplexing overhead. In response to these concerns within the OTFS framework, a novel modulation technology known as Affine Frequency Division Multiplexing (AFDM) which is based on the discrete affine Fourier transform has emerged. AFDM effectively resolves the challenges by achieving full diversity through parameter adjustments aligned with the channel's delay-Doppler profile. Consequently, AFDM is capable of achieving performance levels comparable to OTFS. As the research on AFDM detection is currently limited, we present a low-complexity yet efficient message passing (MP) algorithm. This algorithm handles joint interference cancellation and detection while capitalizing on the inherent sparsity of the channel. Based on simulation results, the MP detection algorithm outperforms Minimum Mean Square Error (MMSE) and Maximal Ratio Combining (MRC) detection techniques.Comment: 8 pages, 7 figure
    corecore