2,310 research outputs found

    Dosimetric comparison of intensity-modulated proton radiotherapy versus intensity-modulated photon-based radiotherapy for breast cancer

    Get PDF
    Purpose: This study aims to compare the dosimetric differences in intensity-modulated proton therapy (IMPT) using pencil beam scanning technology and intensity-modulated photon-based radiotherapy (IMRT) in hypofractionated whole-breast irradiation (HF-WBI) and find out the more beneficial technique. Methods and Materials: Eight breast cancer (BC) patients with pathological stage T1 ~ 2N0M0 were immobilized and underwent 4D-CT scanning used deep inspiration breath-hold (DIBH) technology. The IMPT and IMRT plans were designed for each patient. The IMPT plans used two en-face beam angles. IMRT plans were designed using the field in field technique. The optimization constraints of the two types of plans were identical. Prescription dose and regimen was 40.05 Gy (relative biological effect [RBE])/15 fx with a 10 Gy (RBE)/5 fx boost, five fractions a week. A dose of 95% of the target volume should not be less than the prescribed dose. The target coverage was evaluated using D1, D2, D50, D95, D98, and D99. The target dose distribution and conformity were evaluated using the Conformity index (CI) and the homogeneity index (HI). The Organs at risk (OARs) were evaluated using mean dose (Dmean) and maximum dose (Dmax). Ipsilateral Lung and Contralateral Lung were evaluated additionally using V5, V10, V20, V30. Results: The mean dose (Dmean) of the Heart (P = 0.012), Ipsilateral Lung (P = 0.036), Contralateral Lung (P = 0.012), and Spinal Cord (P = 0.012) were significantly reduced in IMPT plans. The IMPT also showed a tendency to reduce the V20 (P = 0.05) and V30 (P = 0.05) of the Ipsilateral Lung. But there was no significant difference in target coverage, homogeneity, and conformity between the IMRT and IMPT plans. Conclusion: Compared to IMRT, the IMPT using pencil beam scanning technology can spare OARs without compromising target coverage in BC patients undergoing HF-WBI, which potentially reduce the incidence of radiation-related adverse effects and thus may positively impact long-term survival

    Short-Term Traffic Prediction Based on Genetic Algorithm Improved Neural Network

    Get PDF
    This paper takes the time series of short-term traffic flow as research object. The delay time and embedding dimension are calculated by C-C algorithm, and the chaotic characteristics of the time series are verified by small data sets method.Then based on the neural network prediction model and the chaotic phase space reconstruction theory, the network topology is determined, and the prediction is conducted by the wavelet neural network and RBF neural network using Lan-Hai expressway experimental data. The results show that the prediction effect of RBF neural network is better. Due to the poor stability of the network caused by the initial parameters randomness, the genetic algorithm is used to optimize the initial parameters. The results show that the prediction error of the optimized wavelet neural network or RBF neural network is reduced by more than 10%, and prediction accuracy of the latter is better

    Variations in photoprotective potential along gradients of leaf development and plant succession in subtropical forests under contrasting irradiances

    Get PDF
    The successful development of photosynthetic organs is the basis of plant growth and community development. To reveal photo-acclimation to high irradiance in tree species during the course of leaf development and plant succession of subtropical forests, photosynthetic efficiency and photoprotective compounds were analyzed in young and mature leaves of three mid-successional tree species (Castanopsis fissa, Castanopsis chinensis and Schima superba) and three late-successional tree species (Machilus chinensis, Cryptocarya chinensis and Cryptocarya concinna), grown in 100% full sunlight (FL) or 30% of FL (low light, LL). Young leaves of the two species groups exhibited lower chlorophyll (Chl) content, Rubisco content, net photosynthetic rate (Pn), carboxylation efficiency (CE), effective photochemical yield (ΦPSII), photorespiratory electron flow (JO), but higher dark respiration (Rd), and ratios of carotenoids/chlorophylls (Car/Chl), anthocyanins/chlorophylls (Anth/Chl), flavonoids/chlorophylls (Flav/Chl), phenols/chlorophylls (Phen/Chl) and total antioxidant capacity/chlorophylls (TAC/Chl) than those of mature leaves, regardless of growth irradiance. Young leaves of both species groups demonstrated a higher flexibility of Anth/Chl, Flav/Chl, Phen/Chl and TAC/Chl in response to different light conditions than mature leaves. Flav/Chl in young leaves of late-successional group was remarkably higher than that of mid-successional group under the same light conditions. There was a negative correlation between antioxidant-dependent photoprotective potential and photosynthetic efficiency in young and mature leaves of the six tree species grown under either FL or LL. Our results explain partial mechanisms that lie behind the replacement of communities in subtropical forests: highly integrated photoprotective potential allows young leaves of shade-tolerant late-successional species to develop smoothly into mature organs under high irradiance.This work was funded by the National Natural Science Foundation of China (31570398, 31270287). The study was also supported by the key programme of Guangdong Province Natural Science Foundation (2015A030311023)

    PhDHS Is Involved in Chloroplast Development in Petunia

    Get PDF
    Deoxyhypusine synthase (DHS) is encoded by a nuclear gene and is the key enzyme involved in the post-translational activation of the eukaryotic translation initiation factor eIF5A. DHS plays important roles in plant growth and development. To gain a better understanding of DHS, the petunia (Petunia hybrida) PhDHS gene was isolated, and the role of PhDHS in plant growth was analyzed. PhDHS protein was localized to the nucleus and cytoplasm. Virus-mediated PhDHS silencing caused a sectored chlorotic leaf phenotype. Chlorophyll levels and photosystem II activity were reduced, and chloroplast development was abnormal in PhDHS-silenced leaves. In addition, PhDHS silencing resulted in extended leaf longevity and thick leaves. A proteome assay revealed that 308 proteins are upregulated and 266 proteins are downregulated in PhDHS-silenced plants compared with control, among the latter, 21 proteins of photosystem I and photosystem II and 12 thylakoid (thylakoid lumen and thylakoid membrane) proteins. In addition, the mRNA level of PheIF5A-1 significantly decreased in PhDHS-silenced plants, while that of another three PheIF5As were not significantly affected in PhDHS-silenced plants. Thus, silencing of PhDHS affects photosynthesis presumably as an indirect effect due to reduced expression of PheIF5A-1 in petunia.Significance:PhDHS-silenced plants develop yellow leaves and exhibit a reduced level of photosynthetic pigment in mesophyll cells. In addition, arrested development of chloroplasts is observed in the yellow leaves

    A Possible Periodicity in the Radio Lightcurves of 3C454.3

    Full text link
    During the period 1966.5 - 2006.2 the 15GHz and 8GHz lightcurves of 3C454.3 (z=0.859) show a qsasi-periodicity of ~12.8 yr (~6.9 yr in the rest frame of the source) with a double-bump structure. This periodic behaviour is interpreted in terms of a rotating double-jet model in which the two jets are created from the black holes in a binary system and rotate with the period of the orbital motion. The periodic variations in the radio fluxes of 3C454.3 are suggested to be mainly due to the lighthouse effects (or the variation in Doppler boosting) of the precessing jets which are caused by the orbital motion. In addition, variations in the mass-flow rates accreting onto the black holes may be also involved.Comment: 15 pages, 11 figure

    Case report: Fatal infantile hypertonic myofibrillar myopathy with compound heterozygous mutations in the CRYAB gene

    Get PDF
    BackgroundFatal infantile hypertonic myofibrillar myopathy (FIHMM) is an autosomal recessive hereditary disease characterized by amyotrophy, progressive flexion contracture and ankylosis of the trunk and limb muscles, apnea and respiratory failure, and increased creatine phosphate levels. It is caused by mutations in the CRYAB gene, and only around 18 cases including genetic mutations have been reported worldwide. All patients with FIHMM develop respiratory distress, progressive stiffness of the limbs, and have a poor prognosis. However, no effective treatment for CRYAB-associated respiratory failure has been reported. Here, we report a case of FIHMM with a novel heterozygous missense mutation.Case PresentationA 2-year-old female developed scoliosis of the lumbar spine and restrictive ventilatory dysfunction in infancy. She was admitted to the hospital with labored breathing on the third day after the second injection of inactivated poliomyelitis vaccine. Acute respiratory failure, pneumothorax, and cardiac arrest arose in the patient during hospitalization, and progressive stiffness of the trunk and limb muscles appeared, accompanied by obvious abdominal distension and an increase in phosphocreatine kinase levels. Screenings for genetic metabolic diseases in the blood and urine were normal. Electromyography revealed mild myogenic damage. A muscle biopsy indicated the accumulation of desmin, α-crystallin, and myotilin in the musculus biceps brachii, and dense granules were observed in muscle fibers using electron microscopy. Mutation analysis of CRYAB revealed a novel heterozygous missense mutation in the proband, c.302A > C (p.His101Pro) and c.3G > A (p.Met1Ile), which inherited from her asymptomatic, heterozygous carrier parents, respectively. The proband was finally diagnosed as FIHMM. One month after the FIHMM diagnosis, the child died of respiratory failure.ConclusionWe report a case of FIHMM with a novel heterozygous missense mutation of CRYAB. This finding might improve our understanding of FIHMM and highlight a novel mutation in the Chinese population

    Was the first industrial revolution a conjuncture in the history of the world economy?

    Get PDF
    Quantitative analysis of flavonoids in flower petals of Nymphaea ‘King of Siam’. (DOCX 18 kb

    RAB31 Targeted by MiR-30c-2-3p Regulates the GLI1 Signaling Pathway, Affecting Gastric Cancer Cell Proliferation and Apoptosis

    Get PDF
    Background: Gastric cancer (GC), one of the most common cancers worldwide, is highly malignant and fatal. Ras-related protein in brain 31 (RAB31), a member of the RAB family of oncogenes, participates in the process of carcinogenesis and cancer development; however, its role in GC progression is unknown.Methods: In our study, 90 pairs of tissue microarrays were used to measure the levels of RAB31 protein by immunochemistry, and 22 pairs of fresh tissue were used to measure the levels of RAB31 mRNA by quantitative PCR. We also investigated the effects of RAB31 on tumor growth both in vitro and in vivo.Results: RAB31 was overexpressed in GC tissues, and its overexpression predicted poor survival in patients. In a nude mouse model, depletion of RAB31 inhibited tumor growth. In vitro, silencing of RAB31 suppressed cell viability, promoted cell cycle arrest, enhanced apoptosis, and affected the expression of cell cycle and apoptotic proteins; these effects were mediated by glioma-associated oncogene homolog 1 (GLI1). Co-immunoprecipitation and immunofluorescence assays confirmed that RAB31 interacted with GLI1. In addition, luciferase reporter assays and Western blotting showed that microRNA-30c-2-3p modulated the RAB31/GLI1 pathway by targeting the 3′-untranslated region of RAB31.Conclusions: Collectively, these data show that RAB31 is regulated by microRNA-30c-2-3p, and functions as an oncogene in GC tumorigenesis and development by interacting with GLI1. Therefore, targeting the miR-30c-2-3p/RAB31/GLI1 axis may be a therapeutic intervention for gastric cancer
    corecore