9,507 research outputs found

    Robust Preparation of GHZ and W States of Three Distant Atoms

    Full text link
    Schemes to generate Greenberger-Horne-Zeilinger(GHZ) and W states of three distant atoms are proposed in this paper. The schemes use the effects of quantum statistics of indistinguishable photons emitted by the atoms inside optical cavities. The advantages of the schemes are their robustness against detection inefficiency and asynchronous emission of the photons. Moreover, in Lamb-Dicke limit, the schemes do not require simultaneous click of the detectors, this makes the schemes more realizable in experiments.Comment: 5 pages, 1 fiure. Phys. Rev. A 75, 044301 (2007

    A Lattice Boltzmann method for simulations of liquid-vapor thermal flows

    Full text link
    We present a novel lattice Boltzmann method that has a capability of simulating thermodynamic multiphase flows. This approach is fully thermodynamically consistent at the macroscopic level. Using this new method, a liquid-vapor boiling process, including liquid-vapor formation and coalescence together with a full coupling of temperature, is simulated for the first time.Comment: one gzipped tar file, 19 pages, 4 figure

    Diffusion in a multi-component Lattice Boltzmann Equation model

    Full text link
    Diffusion phenomena in a multiple component lattice Boltzmann Equation (LBE) model are discussed in detail. The mass fluxes associated with different mechanical driving forces are obtained using a Chapman-Enskog analysis. This model is found to have correct diffusion behavior and the multiple diffusion coefficients are obtained analytically. The analytical results are further confirmed by numerical simulations in a few solvable limiting cases. The LBE model is established as a useful computational tool for the simulation of mass transfer in fluid systems with external forces.Comment: To appear in Aug 1 issue of PR

    Galilean invariance of lattice Boltzmann models

    Full text link
    It is well-known that the original lattice Boltzmann (LB) equation deviates from the Navier-Stokes equations due to an unphysical velocity dependent viscosity. This unphysical dependency violates the Galilean invariance and limits the validation domain of the LB method to near incompressible flows. As previously shown, recovery of correct transport phenomena in kinetic equations depends on the higher hydrodynamic moments. In this Letter, we give specific criteria for recovery of various transport coefficients. The Galilean invariance of a general class of LB models is demonstrated via numerical experiments

    Multi-component lattice-Boltzmann model with interparticle interaction

    Full text link
    A previously proposed [X. Shan and H. Chen, Phys. Rev. E {\bf 47}, 1815, (1993)] lattice Boltzmann model for simulating fluids with multiple components and interparticle forces is described in detail. Macroscopic equations governing the motion of each component are derived by using Chapman-Enskog method. The mutual diffusivity in a binary mixture is calculated analytically and confirmed by numerical simulation. The diffusivity is generally a function of the concentrations of the two components but independent of the fluid velocity so that the diffusion is Galilean invariant. The analytically calculated shear kinematic viscosity of this model is also confirmed numerically.Comment: 18 pages, compressed and uuencoded postscript fil

    Geometry Optimization of Self-Similar Transport Network

    Get PDF
    We optimize geometries of various self-similar transport networks using a three-step strategy based on the entransy theory. Using this optimization method, we obtained optimal relationships of geometric parameters of T-shape networks for fluid flow, heat conduction, convective heat transfer, and other transport phenomena. Some optimization results agree well with the existing theories or experimental data. The optimized transport network structure depends strongly on the optimization objective and the constraints, so that both the maximum heat transfer effect and minimum flow resistance cannot be satisfied at the same time

    A receiver-initiated soft-state probabilistic multicasting protocol in wireless ad hoc networks

    Get PDF
    A novel Receiver-Initiated Soft-State Probabilistic multicasting protocol (RISP) for mobile ad hoc network is proposed in this paper. RISP introduces probabilistic forwarding and soft-state for making relay decisions. Multicast members periodically initiate control packets, through which intermediate nodes adjust the forwarding probability. With a probability decay function (soft-state), routes traversed by more control packets are reinforced, while the less utilized paths are gradually relinquished. In this way, RISP can adapt to node mobility: at low mobility, RISP performs similar to a tree-based protocol; at high mobility, it produces a multicast mesh in the network. Simulation results show RISP has lower delivery redundancy than meshbased protocols, while achieving higher delivery ratio. Further, the control overhead is lower than other compared protocols. © 2005 IEEE.published_or_final_versio

    A receiver-initiated soft-state probabilistic multicasting protocol in wireless ad hoc networks

    Get PDF
    A novel Receiver-Initiated Soft-State Probabilistic multicasting protocol (RISP) for mobile ad hoc network is proposed in this paper. RISP introduces probabilistic forwarding and soft-state for making relay decisions. Multicast members periodically initiate control packets, through which intermediate nodes adjust the forwarding probability. With a probability decay function (soft-state), routes traversed by more control packets are reinforced, while the less utilized paths are gradually relinquished. In this way, RISP can adapt to node mobility: at low mobility, RISP performs similar to a tree-based protocol; at high mobility, it produces a multicast mesh in the network. Simulation results show RISP has lower delivery redundancy than meshbased protocols, while achieving higher delivery ratio. Further, the control overhead is lower than other compared protocols. © 2005 IEEE.published_or_final_versio
    corecore