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We optimize geometries of various self-similar transport networks using a three-step strategy
based on the entransy theory. Using this optimization method, we obtained optimal relationships
of geometric parameters of T-shape networks for fluid flow, heat conduction, convective heat
transfer, and other transport phenomena. Some optimization results agree well with the existing
theories or experimental data. The optimized transport network structure depends strongly on
the optimization objective and the constraints, so that both the maximum heat transfer effect and
minimum flow resistance cannot be satisfied at the same time.

1. Introduction

Self-similar transport networks exist in natural world and human life extensively. For
instance, the leaf venations of trees in nature, the windpipe network in lungs and the
blood vessel network in human bodies, and the water, gas, oil, and power supplies of
a city or even a country. The optimization of transport networks has gained increasing
attentions in recent years due to its importance with great challenging [1–8]. It has
been widely used that the mechanical/electrical energy dissipation rate is minimized
for an optimal hydraulic/electrical network [5, 6, 9–11]. Ordonez et al. [2] studied the
optimal structure of flow network which connected one point to a number of points by
minimizing the fluid power losses, and Durand [6, 12] obtained the optimal flow networks
in terms of minimizing the mechanical dissipative energy with respect to two constraints:
certain total channel volume and certain total channel surface area.Bohn and Magnasco
[5] introduced an electrical energy dissipation rate function, which should be minimized
for an optimal electrical transport network.Rodriguez-Iturabe [13] explained the tree-like
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structure and some empirical relationships of the river drainage network by the principles
of minimum energy expenditure. However, the minimum energy dissipation principle is
hardly applicable directly to heat and mass transportation networks, because the concept
of energy is unsuitable (for a mass transport network) or conserved (for the thermal
energy in a heat conduction network) rather than dissipated. New principles had to be
developed for the optimization of heat and mass transfer processes. A constructal theory has
been proposed to construct an optimal network for volume-point heat conduction problem
[14].

Recently, a physical quantity, “entransy”, was proposed by Guo et al. [15] to
characterize the heat transfer capability of an object. In analogy with the theory system of
electricity or mechanics, the entransy of an object is featured as the “potential energy” of
the internal energy (U) at the temperature (T). Though the thermal energy is conserved,
the entransy dissipates in heat transfer processes and the entransy dissipation rate can be
used as a criterion for optimization of heat transfer [15]. Chen et al. combined the entransy
theory with the constructal theory for optimal network geometries of heat transfer [16–20].
More recently, it has been proved that the entransy is consistent with the macroscopic
appearance of potential energy of “thermomass” in heat transfer [21–24]. Examples have
shown successes of minimum entransy dissipation rate principle for optimization of heat
and mass transfer in complex systems [15, 25–30]. Inspired by Guo’s theory, Liu et al. [31]
extended the concept of entransy into heat and fluid flow networks. The concept of entransy
dissipation rate in heat/mass transport network is comparable to the concept of energy
dissipation rate. They therefore derived the formulations of the entransy dissipation rate
for transport networks, and the analysis indicated that the minimum entransy dissipation
rate leads to the optimal transfer performance of transport network subject to a given
constraint. Their optimization analyses agreed well with the existing experimental data and
optimization theories for transport networks [31].

In this paper, we are focusing on the geometry optimization of self-similar transport
networks using the Entransy theory. The rest parts of this paper are organized as follows.
In Section 2, we introduce the basic concept and theory of Entransy, and the optimization
strategy using the Entransy theory. In Section 3, we will first optimize structures of T-
shape transport networks for laminar flow, turbulence, heat conduction, convective heat
transfer, and species diffusion. Finally we summarize the optimization geometric parameters
of transport networks.

2. Entransy Theory and Minimum Entransy Dissipation Principle

2.1. Fundamentals of Entransy Theory

Transport processes can be generally treated as a generalized “mass” movement driven
by a “potential” difference. Thus some common characteristics can be abstracted among
various transport networks such as electrical, hydraulic, and heat or mass transport
networks. Therefore, once the constructed electric network was optimized with the minimum
energy dissipation principle, the corresponding hydraulic network may be optimized as
well. Alternatively, one can obtain the structure of optimal heat conduction networks by
identifying and minimizing the physical quantity of a thermal system which corresponds
to the concept of energy in the electric/hydraulic systems.

Entransy is such a quantity, which describes the capability of heat conduction in
continuum and was originally used for optimization of heat transfer devices and defined
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as the integral of a half of product between the internal energy (U) and the thermal potential
(T) of a small element (Ω) over the system [15, 31]

G =
∫
system

(
1
2
UT

)
Ω
dΩ. (2.1)

The entransy dissipation rate per unit volume (J) in heat transfer process, which
measures the heat transfer irreversibility, can be calculated by

J = −�q · ∇T, (2.2)

where �q is the heat flux and ∇T is the temperature gradient. Guo and his colleagues have
proved that the heat transfer process is optimized when the entransy dissipation rate reaches
the minimum or the maximum depending on the constraints [15, 26, 27, 31]. In a recent work,
Liu et al. [31] generalized the entransy concept of heat transfer to other transport processes,
such as mass diffusion. The generalized entransy can be calculated by the product between a
generalized flux and a generalized potential gradient.

Furthermore, Liu et al. [31] deduced the entransy dissipation rate for a discrete
network from the continuum system, which is calculated by

Jnetwork =
∑
n

(PnSn) = F∗

⎛
⎝ ∑

n:{Sn>0}

Sn

F∗ Pn −
∑

n:{Sn<0}

−Sn

F∗ Pn

⎞
⎠ = F∗

(
P in − Pout

)
= F∗ΔP, (2.3)

where F∗, S, P represent the injecting flux, the generalized source, and the generalized
potential for transport, respectively. For a given constraint, a minimized entransy dissipation
rate leads to a minimum average potential difference in system, which means the transport
network is optimal.

2.2. Strategy of Optimization Process

To optimize the geometry of a transport network, a three-step process can be followed. First,
we need to find the entransy dissipation rate of transport network as a function of the network
geometry:

Jnetwork =
∑
i

Ji(xi), (2.4)

where xi represents the characteristic length of the transport channel at the ith level. It may
be the length, radius, or area of cross-section of the channels. For one-dimensional linear
transport in each level, a general form of the entransy dissipation rate was given in the early
work [31, equations (7)-(13)].

The second step is to construct the optimization function. Our final goal of
optimization is to find the right geometry leading the minimum entransy dissipation in the
transport process. In real systems, this goal has to be constrained to some conditions, which
are called “constraints”. For example, when we want to maxmize the transport flow rate
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through a network for a given pumping power, this pumping power is the constraint. Once
the optimization constraint (C) is determined, we build the optimization function (Π) by
introducing a Lagrange multiplier (λ) as [5, 31]

Π = Jnetwork − λC =
∑
i

Ji(xi) + λ
∑
i

Ci(xi). (2.5)

Finally to get the minimum entransy dissipation rate, the partial derivative of the
optimization function with respect to xi has to be zero:

∂Π
∂xi

=
∂Jnetwork

∂xi
− λ

∂C

∂xi
= 0. (2.6)

Equation (2.6) together with the conservation equation will lead to the optimal
geometry of transport network.

3. Optimize the Transport Network

In this section we will demonstrate the application of optimization of the transport network
with generalized minimum entransy dissipation principle. The transport phenomena and
governing equations are so different for various transport networks. For a river network,
we have to consider at least two basic conditions: laminar or turbulence flows. For a high-
efficient heat transfer network, it may be through heat conduction, convection, or both. For
simplification, we consider only one means of transport in each case in this work.

We first focus on the T-shape network which has been widely used in engineering.
A typical unit is shown in Figure 1, which is one-in-two outstructured network with circular
cross-sections. We are to optimize the geometric structures of transport networks for different
cases, including laminar flow, turbulence flow, heat conduction, convective heat transfer, and
diffusions.

3.1. Laminar Flow

When considering fluid flows through the network, we may want to get the maximum
volume flow rate (Qv) through the networks with a given total volume (V ). For a fully
developed incompressible laminar flow, the Hagen-Poiseuille’s law gives

Qv =
πr4

8μ
Δp

L
, (3.1)

where μ is the viscosity of the fluid and Δp the pressure drop within the channel of a radius
r = d/2 and a length L.

The entransy dissipation rate of the ith level channels is calculated by

Jmass
i =

πr4i
8μLi

(
Δpi

)2
. (3.2)
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Figure 1: T-shape-round-tube unit of transport network.

Therefore the optimization function can be written by introducing a Lagrange
multiplier λ as

Π = Jmass
network − λV =

∑
i

πr4i
(
Δpi

)2
8μLi

− λ
∑
i

πr2i Li. (3.3)

In order to minimize the entransy dissipation rate, let the partial derivative of the
Lagrange function with respect to the radius ri be zero and we can get a generalized solution
of (3.3)

Δpi =
χLi

ri
, (3.4)

where χ =
√
4μ/λ is mostly a constant.

The conservation of mass at a junction givesm1 = 2m2, which leads to

πr41
8μL1

Δp1 =
n∑
i=2

πr4i
8μLi

Δpi. (3.5)

Therefore we can get a relation between the cross-sectional radius of a parent channel
and that of the daughter channels

r31 =
n∑
i=2

r3i . (3.6)
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This result agrees with Murray’s law. There is no other constraint in the transport
process through a self-similar structure, so that the result is accessible for asymmetric and
multibranch transport networks as well.

The geometry can be further optimized with the length of tubes. Hence, we need to
introduce another constraint. For instance both constant volume and constant structure area
of the entire network were used as constraints to optimize a T-shape network structure [32].
Inspired by this, here we give another constraint: a constant total structure area, which means
the area the structure occupies but not the surface area. For a double-level network, the 2nd
constraint leads to 2L1L2 = const, so that substituting (3.4) into (3.2) results in the entransy
dissipation rate as

Jnetwork =
πL1r

2
1

2λ
+
πL2r

2
2

λ
. (3.7)

The optimization function can be written by introducing another Lagrange multiplier
η as

Πmass =
πL1r

2
1

2λ
+
πL2r

2
2

λ
− ηL1L2. (3.8)

Leting partial derivative of (3.8) with respect to r1 and r2 be zero, we can get

r31 =
(2λη

π
L1

)3/2

, r32 =
(
λη

π
L0

)3/2
(3.9)

which leads to

L1

L2
= 21/3. (3.10)

This result is very consistent with the previous optimizations [32].

3.2. Turbulence Flow

Different from the laminar flow, the pressure drop in turbulence flows is related to the
geometric parameters by the Darcy-Weisbach equation:

Δp = fρ
L

d

v2

2
, (3.11)

where f is the Darcy friction factor, ρ is the density of fluid, and v is the average velocity. The
entransy dissipation rate of the ith channel is

Jmass
i =

π

4

√
2

fLiρ
d5/2
i

(
Δpi

)3/2
. (3.12)



Mathematical Problems in Engineering 7

The objective is the maximum flow rate and the constraint is the given total volume.
The optimization function is then

Πmass = Jmass
network − λV =

∑
i

π

4

√
2

fLiρ
d5/2
i

(
Δpi

)3/2 − λ
∑
i

π

4
d2
i Li. (3.13)

Let the partial derivative of the Lagrange function with respect to di be zero. Together
with the conservation of mass at a junction, we can get a generalized solution as

d7/3
1 =

n∑
i=2

d7/3
i . (3.14)

For a double-level network, with another constraint of given total structure area, similar with
the optimization process in Section 3.1, we can further get the optimal length relationship as

L1

L2
= 21/7. (3.15)

3.3. Heat Conduction

In engineering scale heat flux is proportional to the area of cross-section and the temperature
gradient. The transport process generally follows the Fourier’s Law: Q = kA∇T , where A
denotes the cross-section area of the channel with a thermal conductivity k.

When distributing high-thermal-conductivity materials into a system, we want to
achieve the best heat conduction effect of the high-conductivity network with a given total
volume. Thus the heat flow rate can be related to the geometry of the network by

Qi = kAi
ΔTi
Li

. (3.16)

The entransy dissipation rate of the heat conduction is

Jnetwork =
∑
i

kAi
(ΔTi)2

Li
. (3.17)

The optimization function can be written by introducing a Lagrange multiplier λ to
minimize the entransy dissipation rate:

Πheat = Jnetwork − λ
∑
i

Vi =
∑
i

kAi
(ΔTi)2

Li
− λ

∑
i

AiLi. (3.18)

A generalized solution of this function is

ΔTi = αLi, (3.19)
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where α =
√
λ/k is a constant. The conservation of thermal flux at a junction givesQ1 =

∑
i Qi

which leads to

r21 =
n∑
i=2

r2i . (3.20)

This agreeswell with the result of constructal theory [14]. Still a further optimal length
relationship with another constraint as in Section 3.1 is

L1 = L2. (3.21)

3.4. Convective Heat Transfer

Convective heat transfer contains both heat andmass transfer process.When optimizing such
networks, we need to consider both minimizing flow resistance and maximizing heat flux.
For simplification, we assume the flow to be a fully developed laminar flow with a constant
Nusselt number. The thermal conductivity of walls and the temperature difference between
the wall and the fluid are also assumed constant.

Based on the Newton’s law of cooling, the entransy dissipation rate of the ith channel
can be written as

Ji = 2πhiriLi(ΔT)2, (3.22)

where h is the convective heat transfer coefficient. For a given volume of network, the
optimization equation is

Jnetwork =
∑
i

2πhiriLi(ΔT)2 − λ
∑
i

πr2i Li. (3.23)

The generalized solution of the optimization function is

ri =
hi(ΔT)2

λ
. (3.24)

Therefore we get the relationship of radius:

r1 = r2 = r3 = · · · = rn. (3.25)

For another given total structure area constraint, the length of channels for a double-
level network can be further optimized by

L1

L2
= 2. (3.26)
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Comparing these results with those for the pure laminar flow network we can
conclude that both the maximum heat transfer effect and minimum flow resistance cannot
be satisfied at the same time.

3.5. Other Transport Phenomena

Because of the similarity of physics and governing equations, this optimization strategy can
be easily extended to electrical conduction and mass diffusion. If the constraints are also
equivalent, the optimization results of the heat conduction network are even available to
be used for these two transports, as shown in (3.20) and (3.21). We also noticed that when
coupled with fluid flow, the mass diffusion may have a different optimization objective.
For examples, the objective for pure fluid flow is to maximize the flow rate, while that for
coupling fluid flow with mass diffusion may be to maximize the mass diffusion effect, such
as the transmural nutrients transport in blood vessel network. For such cases, the entransy
dissipation rate for the ith vessel is proportional to the vessel surface area by

Jmass
i = 2πridi ·Dm(Δc)2, (3.27)

where Dm is the mass diffusion coefficient and c is the concentration. The optimization
function for a given pumping power is therefore

Πmass = Jmass
network − λW = Dm(Δc)2

∑
i

2πridi − λ
∑
i

πr4i
8μ

(
Δpi

)2
di

, (3.28)

which leads to the optimal network geometry requiring

r2.51 ∝
n∑
i=2

r2.5i . (3.29)

This result is different from the Murray’s law and has been validated by some
experimental data from small intestine of dogs [31]. This indicates again that the optimized
transport network structure depends on the optimization objective and the constraint.

T-shape transport network may be the simplest artificial geometry of network.
However in practice, other kinds of bifurcation geometry, such as the Y-shape, are more
popularly used. For these bifurcation geometries, the angle is the other optimization target.
Such optimization analysis can be found in the literature in [33]. The results of angle
optimization can be used together with the size optimizations in this work to construct the
optimal structure of transport networks.

4. Conclusions

We have optimized geometries of various transport networks using a three-step strategy
based on the entransy theory. We first find the entransy dissipation rate of transport network
as a function of the network geometry based on the transport governing equations, then
build the optimization function by introducing a Lagrange multiplier with the optimization
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constraint and finally get the optimized geometric parameters by minimizing the entransy
dissipation rate. Using this optimization strategy and method, we obtained optimal
relationships of geometric parameters for T-shape networks for fluid flow, heat conduction,
convective heat transfer, and other transport phenomena. Some optimization results agree
well with the existing theories or experimental data.We also find that the optimized transport
network structure depends strongly on the optimization objective and the constraints. For
example, for one transport network both the maximum heat transfer effect and minimum
flow resistance cannot be satisfied at the same time. The angle optimization of other kinds of
bifurcation geometric network by microelement analysis can be used together with the size
optimizations in this work to construct the optimal structure of transport networks.
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