38 research outputs found

    Understanding the structural disorganization of starch in water-ionic liquid solutions

    Get PDF
    Using synchrotron X-ray scattering analyses and Fourier transform infrared spectroscopy, this work provides insights into the solvent effects of water : [C2mim][OAc] solutions on the disorganization of a starch semi-crystalline structure. When a certain ratio (10.2 : 1 mol/mol) of water : [C2mim][OAc] solution is used, the preferential hydrogen bonding between starch hydroxyls and [OAc]− anions results in the breakage of the hydrogen bonding network of starch and thus the disruption of starch lamellae. This greatly facilitates the disorganization of starch, which occurs much easier than in pure water. In contrast, when 90.8 : 1 (mol/mol) water : [C2mim][OAc] solution is used, the interactions between [OAc]− anions and water suppress the solvent effects on starch, thereby making the disorganization of starch less easy than in pure water. All these differences can be shown by changes in the lamellar and fractal structures: firstly, a preferable increase in the thickness of the crystalline lamellae rather than that of the amorphous lamellae causes an overall increase in the thickness of the semi-crystalline lamellae; then, the amorphous lamellae start to decrease probably due to the out-phasing of starch molecules from them; this forms a fractal gel on a larger scale (than the lamellae) which gradually decreases to a stable value as the temperature increases further. It is noteworthy that these changes occur at temperatures far below the transition temperature that is thermally detectable as is normally described. This hints to our future work that using certain aqueous ionic liquids for destructuration of the starch semi-crystalline structure is the key to realize green processes to obtain homogeneous amorphous materials

    Different characteristic effects of ageing on starch-based films plasticised by 1-ethyl-3-methylimidazolium acetate and by glycerol

    Get PDF
    The focus of this study was on the effects of plasticisers (the ionic liquid 1-ethyl-3-methylimidazolium acetate, or [Emim][OAc]; and glycerol) on the changes of starch structure on multiple length scales, and the variation in properties of plasticised starch-based films, during ageing. The films were prepared by a simple melt compression moulding process, followed by storage at different relative humidity (RH) environments. Compared with glycerol, [Emim][OAc] could result in greater homogeneity in [Emim][OAc]-plasticised starch-based films (no gel-like aggregates and less molecular order (crystallites) on the nano-scale). Besides, much weaker starch-starch interactions but stronger starch-[Emim][OAc] interactions at the molecular level led to reduced strength and stiffness but increased flexibility of the films. More importantly, [Emim][OAc] (especially at high content) was revealed to more effectively maintain the plasticised state during ageing than glycerol: the densification (especially in the amorphous regions) was suppressed; and the structural characteristics especially on the nano-scale were stabilised (especially at a high RH), presumably due to the suppressed starch molecular interactions by [Emim][OAc] as confirmed by Raman spectroscopy. Such behaviour contributed to stabilised mechanical properties. Nonetheless, the crystallinity and thermal stability of starch-based films with both plasticisers were much less affected by ageing and moisture uptake during storage (42 days), but mostly depended on the plasticiser type and content. As starch is a typical semi-crystalline bio-polymer containing abundant hydroxyl groups and strong hydrogen bonding, the findings here could also be significant in creating materials from other similar biopolymers with tailored sensitivity and properties to the environment

    Characteristics of starch-based films with different amylose contents plasticised by 1-ethyl-3-methylimidazolium acetate

    Get PDF
    Starch-based films plasticised by an ionic liquid, 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]), were prepared by a simple compression moulding process, facilitated by the strong plasticisation effect of [Emim][OAc]. The effects of amylose content of starch (regular vs. high-amylose maize) and relative humidity (RH) during ageing of the samples on a range of structural and material characteristics were investigated. Surprisingly, plasticisation by [Emim][OAc] made the effect of amylose content insignificant, contrary to most previous studies when other plasticisers were used. In other words, [Emim][OAc] changed the underlying mechanism responsible for mechanical properties from the entanglement of starch macromolecules (mainly amylose), which has been reported as a main responsible factor previously. The crystallinity of the plasticised starch samples was low and thus was unlikely to have a major contribution to the material characteristics, although the amylose content impacted on the crystalline structure and the mobility of amorphous parts in the samples to some extent. Therefore, RH conditioning and thus the sample water content was the major factor influencing the mechanical properties, glass transition temperature, and electrical conductivity of the starch films. This suggests the potential application of ionic liquid-plasticised starch materials in areas where the control of properties by environmental RH is desired

    Facile preparation of starch-based electroconductive films with ionic liquid

    Get PDF
    Here, we discovered that starch could be straightforwardly processed into optically-transparent electroconductive films, by compression molding at a relatively mild temperature (55 °C or 65 °C), much lower than those commonly used in biopolymer melt processing (typically over 150 °C). Such significantly-reduced processing temperature was achieved with the use of an ionic liquid plasticizer, 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]). A higher [C2mim][OAc] content, lower processing temperature (55 °C), and/or higher relative humidity (RH) (75%) during the sample post-processing conditioning, suppressed the crystallinity of the processed material. The original A-type crystalline structure of starch was eliminated, although small amounts of B-type and V-type crystals were formed subsequently. The starch crystallinity could be linked to the mechanical properties of the films. Moreover, the processing destroyed the original lamellar structure of starch, and the amorphous starch processed with [C2mim][OAc]/water could aggregate on the nanoscale. The films displayed excellent electrical conductivity (> 10−3 S/cm), which was higher with a lower processing temperature (55 °C) and a higher conditioning RH (75%). The incorporation of [C2mim][OAc] reduced the thermal decomposition temperature of starch by 30 °K, while the formulation and processing conditions did not affect the film thermal stability

    Ionic Liquids as Tools to Incorporate Pharmaceutical Ingredients into Biopolymer-Based Drug Delivery Systems

    No full text
    This mini-review focuses on the various roles that ionic liquids (ILs) play in the development and applications of biopolymer-based drug delivery systems (DDSs). Biopolymers are particularly attractive as drug delivery matrices due to their biocompatibility, low immunogenicity, biodegradability, and strength, whereas ILs can assist the formation of drug delivery systems. In this work, we showcase the different strategies that were explored using ILs in biopolymer-based DDSs, including impregnation of active pharmaceutical ingredients (APIs)-ILs into biopolymeric materials, employment of the ILs to simplify the process of making the biopolymer-based DDSs, and using the ILs either as dopants or as anchoring agents

    Renewable Biopolymers Combined with Ionic Liquids for the Next Generation of Supercapacitor Materials

    No full text
    The search for biocompatible and renewable materials for the next generation of energy devices has led to increasing interest in using biopolymers as a matrix component for the development of electric double-layer capacitors (EDLCs). However, using biopolymers as host matrices presents limitations in performance and scalability. At the same time, ionic liquids (ILs) have shown exceptional properties as non-aqueous electrolytes. This review intends to highlight the progress in integrating ILs and biopolymers for EDLC. While ILs have been used as solvents to process biopolymers and electrolyte materials, biopolymers have been utilized to provide novel chemistries of electrolyte materials via one of the following scenarios: (1) acting as host polymeric matrices for IL-support, (2) performing as polymeric fillers, and (3) serving as backbone polymer substrates for synthetic polymer grafting. Each of these scenarios is discussed in detail and supported with several examples. The use of biopolymers as electrode materials is another topic covered in this review, where biopolymers are used as a source of carbon or as a flexible support for conductive materials. This review also highlights current challenges in materials development, including improvements in robustness and conductivity, and proper dispersion and compatibility of biopolymeric and synthetic polymeric matrices for proper interface bonding

    Are Myths and Preconceptions Preventing Us from Applying Ionic Liquid Forms of Antiviral Medicines to the Current Health Crisis?

    No full text
    At the moment, there are no U.S. Food and Drug Administration (U.S. FDA)-approved drugs for the treatment of COVID-19, although several antiviral drugs are available for repurposing. Many of these drugs suffer from polymorphic transformations with changes in the drug’s safety and efficacy; many are poorly soluble, poorly bioavailable drugs. Current tools to reformulate antiviral APIs into safer and more bioavailable forms include pharmaceutical salts and cocrystals, even though it is difficult to classify solid forms into these regulatory-wise mutually exclusive categories. Pure liquid salt forms of APIs, ionic liquids that incorporate APIs into their structures (API-ILs) present all the advantages that salt forms provide from a pharmaceutical standpoint, without being subject to solid-state matter problems. In this perspective article, the myths and the most voiced concerns holding back implementation of API-ILs are examined, and two case studies of API-ILs antivirals (the amphoteric acyclovir and GSK2838232) are presented in detail, with a focus on drug property improvement. We advocate that the industry should consider the advantages of API-ILs which could be the genesis of disruptive innovation and believe that in order for the industry to grow and develop, the industry should be comfortable with a certain element of risk because progress often only comes from trying something different

    Ionic Liquids: New Forms of Active Pharmaceutical Ingredients with Unique, Tunable Properties

    No full text
    This Review aims to summarize advances over the last 15 years in the development of active pharmaceutical ingredient ionic liquids (API-ILs), which make up a prospective game-changing strategy to overcome multiple problems with conventional solid-state drugs, for example, polymorphism. A critical part of the present Review is the collection of API-ILs and deep eutectic solvents (DESs) prepared to date. The Review covers rules for rational design of API-ILs and tools for API-IL formation, syntheses, and characterization. Nomenclature and ionic speciation, and the confusion that these may cause, are highlighted, particularly for speciation in both ILs and DESs of intermediate ionicity. We also highlight in vivo and in vitro pharmaceutical activity studies, with differences in pharmacokinetic/pharmacodynamic depending on ionicity of API-ILs. A brief overview is provided for the ILs used to deliver drugs, and the Review concludes with key prospects and roadblocks in translating API-ILs into pharmaceutical manufacturing

    Effect of Microwave Plasma Pre-Treatment on Cotton Cellulose Dissolution

    No full text
    The utilization of cellulose to its full potential is constrained by its recalcitrance to dissolution resulting from the rigidity of polymeric chains, high crystallinity, high molecular weight, and extensive intra- and intermolecular hydrogen bonding network. Therefore, pretreatment of cellulose is usually considered as a step that can help facilitate its dissolution. We investigated the use of microwave oxygen plasma as a pre-treatment strategy to enhance the dissolution of cotton fibers in aqueous NaOH/Urea solution, which is considered to be a greener solvent system compared to others. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, and Powder X-ray Diffraction analyses revealed that plasma pretreatment of cotton cellulose leads to physicochemical changes of cotton fibers. Pretreatment of cotton cellulose with oxygen plasma for 20 and 40 min resulted in the reduction of the molecular weight of cellulose by 36% and 60% and crystallinity by 16% and 25%, respectively. This reduction in molecular weight and crystallinity led to a 34% and 68% increase in the dissolution of 1% (w/v) cotton cellulose in NaOH/Urea solvent system. Thus, treating cotton cellulose with microwave oxygen plasma alters its physicochemical properties and enhanced its dissolution
    corecore