18 research outputs found

    MeerKAT Pulsar Timing Array parallaxes and proper motions

    Full text link
    We have determined positions, proper motions, and parallaxes of 7777 millisecond pulsars (MSPs) from ∌3\sim3 years of MeerKAT radio telescope observations. Our timing and noise analyses enable us to measure 3535 significant parallaxes (1212 of them for the first time) and 6969 significant proper motions. Eight pulsars near the ecliptic have an accurate proper motion in ecliptic longitude only. PSR~J0955−-6150 has a good upper limit on its very small proper motion (<<0.4 mas yr−1^{-1}). We used pulsars with accurate parallaxes to study the MSP velocities. This yields 3939 MSP transverse velocities, and combined with MSPs in the literature (excluding those in Globular Clusters) we analyse 6666 MSPs in total. We find that MSPs have, on average, much lower velocities than normal pulsars, with a mean transverse velocity of only 78(8)78(8) km s−1^{-1} (MSPs) compared with 246(21)246(21) km s−1^{-1} (normal pulsars). We found no statistical differences between the velocity distributions of isolated and binary millisecond pulsars. From Galactocentric cylindrical velocities of the MSPs, we derive 3-D velocity dispersions of σρ\sigma_{\rho}, σϕ\sigma_{\phi}, σz\sigma_{z} = 63(11)63(11), 48(8)48(8), 19(3)19(3) km s−1^{-1}. We measure a mean asymmetric drift with amplitude 38(11)38(11) km s−1^{-1}, consistent with expectation for MSPs, given their velocity dispersions and ages. The MSP velocity distribution is consistent with binary evolution models that predict very few MSPs with velocities >300>300 km s−1^{-1} and a mild anticorrelation of transverse velocity with orbital period

    The MeerTime Pulsar Timing Array -- A Census of Emission Properties and Timing Potential

    Full text link
    MeerTime is a five-year Large Survey Project to time pulsars with MeerKAT, the 64-dish South African precursor to the Square Kilometre Array. The science goals for the programme include timing millisecond pulsars (MSPs) to high precision (< 1 Ό\mus) to study the Galactic MSP population and to contribute to global efforts to detect nanohertz gravitational waves with the International Pulsar Timing Array (IPTA). In order to plan for the remainder of the programme and to use the allocated time most efficiently, we have conducted an initial census with the MeerKAT "L-band" receiver of 189 MSPs visible to MeerKAT and here present their dispersion measures, polarization profiles, polarization fractions, rotation measures, flux density measurements, spectral indices, and timing potential. As all of these observations are taken with the same instrument (which uses coherent dedispersion, interferometric polarization calibration techniques, and a uniform flux scale), they present an excellent resource for population studies. We used wideband pulse portraits as timing standards for each MSP and demonstrated that the MeerTime Pulsar Timing Array (MPTA) can already contribute significantly to the IPTA as it currently achieves better than 1 Ό\mus timing accuracy on 89 MSPs (observed with fortnightly cadence). By the conclusion of the initial five-year MeerTime programme in July 2024, the MPTA will be extremely significant in global efforts to detect the gravitational wave background with a contribution to the detection statistic comparable to other long-standing timing programmes.Comment: Accepted to PASA. 27 figures. Data to be made available under the DOI 10.5281/zenodo.5347875 at the time of publicatio

    The MeerKAT telescope as a pulsar facility: System verification and early science results from MeerTime

    Get PDF
    We describe system verification tests and early science results from the pulsar processor (PTUSE) developed for the newly commissioned 64-dish SARAO MeerKAT radio telescope in South Africa. MeerKAT is a high-gain ( ) low-system temperature ( ) radio array that currently operates at 580–1 670 MHz and can produce tied-array beams suitable for pulsar observations. This paper presents results from the MeerTime Large Survey Project and commissioning tests with PTUSE. Highlights include observations of the double pulsar , pulse profiles from 34 millisecond pulsars (MSPs) from a single 2.5-h observation of the Globular cluster Terzan 5, the rotation measure of Ter5O, a 420-sigma giant pulse from the Large Magellanic Cloud pulsar PSR , and nulling identified in the slow pulsar PSR J0633–2015. One of the key design specifications for MeerKAT was absolute timing errors of less than 5 ns using their novel precise time system. Our timing of two bright MSPs confirm that MeerKAT delivers exceptional timing. PSR exhibits a jitter limit of whilst timing of PSR over almost 11 months yields an rms residual of 66 ns with only 4 min integrations. Our results confirm that the MeerKAT is an exceptional pulsar telescope. The array can be split into four separate sub-arrays to time over 1 000 pulsars per day and the future deployment of S-band (1 750–3 500 MHz) receivers will further enhance its capabilities

    Development of Novel Search Techniques for Pulsar Surveys

    No full text

    The MeerTime Pulsar Timing Array: A census of emission properties and timing potential

    No full text
    International audienceMeerTime is a five-year Large Survey Project to time pulsars with MeerKAT, the 64-dish South African precursor to the Square Kilometre Array. The science goals for the programme include timing millisecond pulsar (MSPs) to high precision ( {<} 1 \unicode{x03BC} \mathrm{s} ) to study the Galactic MSP population and to contribute to global efforts to detect nanohertz gravitational waves with the International Pulsar Timing Array (IPTA). In order to plan for the remainder of the programme and to use the allocated time most efficiently, we have conducted an initial census with the MeerKAT ‘L-band’ receiver of 189 MSPs visible to MeerKAT and here present their dispersion measures, polarisation profiles, polarisation fractions, rotation measures, flux density measurements, spectral indices, and timing potential. As all of these observations are taken with the same instrument (which uses coherent dedispersion, interferometric polarisation calibration techniques, and a uniform flux scale), they present an excellent resource for population studies. We used wideband pulse portraits as timing standards for each MSP and demonstrated that the MeerTime Pulsar Timing Array (MPTA) can already contribute significantly to the IPTA as it currently achieves better than 1\,\unicode{x03BC}\mathrm{s} timing accuracy on 89 MSPs (observed with fortnightly cadence). By the conclusion of the initial five-year MeerTime programme in 2024 July, the MPTA will be extremely significant in global efforts to detect the gravitational wave background with a contribution to the detection statistic comparable to other long-standing timing programmes

    The MeerTime Pulsar Timing Array - A Census of Emission Properties and Timing Potential

    No full text
    MeerTime is a five-year Large Survey Project to time pulsars with MeerKAT, the 64-dish South African precursor to the Square Kilometre Array. The science goals for the programme include timing millisecond pulsars (MSPs) to high precision (< 1 Ό\mus) to study the Galactic MSP population and to contribute to global efforts to detect nanohertz gravitational waves with the International Pulsar Timing Array (IPTA). In order to plan for the remainder of the programme and to use the allocated time most efficiently, we have conducted an initial census with the MeerKAT "L-band" receiver of 189 MSPs visible to MeerKAT and here present their dispersion measures, polarization profiles, polarization fractions, rotation measures, flux density measurements, spectral indices, and timing potential. As all of these observations are taken with the same instrument (which uses coherent dedispersion, interferometric polarization calibration techniques, and a uniform flux scale), they present an excellent resource for population studies. We used wideband pulse portraits as timing standards for each MSP and demonstrated that the MeerTime Pulsar Timing Array (MPTA) can already contribute significantly to the IPTA as it currently achieves better than 1 Ό\mus timing accuracy on 89 MSPs (observed with fortnightly cadence). By the conclusion of the initial five-year MeerTime programme in July 2024, the MPTA will be extremely significant in global efforts to detect the gravitational wave background with a contribution to the detection statistic comparable to other long-standing timing programmes

    The MeerTime Pulsar Timing Array - A Census of Emission Properties and Timing Potential

    No full text
    MeerTime is a five-year Large Survey Project to time pulsars with MeerKAT, the 64-dish South African precursor to the Square Kilometre Array. The science goals for the programme include timing millisecond pulsars (MSPs) to high precision (< 1 Ό\mus) to study the Galactic MSP population and to contribute to global efforts to detect nanohertz gravitational waves with the International Pulsar Timing Array (IPTA). In order to plan for the remainder of the programme and to use the allocated time most efficiently, we have conducted an initial census with the MeerKAT "L-band" receiver of 189 MSPs visible to MeerKAT and here present their dispersion measures, polarization profiles, polarization fractions, rotation measures, flux density measurements, spectral indices, and timing potential. As all of these observations are taken with the same instrument (which uses coherent dedispersion, interferometric polarization calibration techniques, and a uniform flux scale), they present an excellent resource for population studies. We used wideband pulse portraits as timing standards for each MSP and demonstrated that the MeerTime Pulsar Timing Array (MPTA) can already contribute significantly to the IPTA as it currently achieves better than 1 Ό\mus timing accuracy on 89 MSPs (observed with fortnightly cadence). By the conclusion of the initial five-year MeerTime programme in July 2024, the MPTA will be extremely significant in global efforts to detect the gravitational wave background with a contribution to the detection statistic comparable to other long-standing timing programmes
    corecore