61 research outputs found

    Role of hypoxia inducible factor-1α (HIF-1α) in innate defense against uropathogenic Escherichia coli infection

    Get PDF
    Uropathogenic E. coli (UPEC) is the primary cause of urinary tract infections (UTI) affecting approximately 150 million people worldwide. Here, we revealed the importance of transcriptional regulator hypoxia-inducible factor-1 α subunit (HIF-1α) in innate defense against UPEC-mediated UTI. The effects of AKB-4924, a HIF-1α stabilizing agent, were studied using human uroepithelial cells (5637) and a murine UTI model. UPEC adherence and invasion were significantly reduced in 5637 cells when HIF-1α protein was allowed to accumulate. Uroepithelial cells treated with AKB-4924 also experienced reduced cell death and exfoliation upon UPEC challenge. In vivo, fewer UPEC were recovered from the urine, bladders and kidneys of mice treated transurethrally with AKB-4924, whereas increased bacteria were recovered from bladders of mice with a HIF-1α deletion. Bladders and kidneys of AKB-4924 treated mice developed less inflammation as evidenced by decreased pro-inflammatory cytokine release and neutrophil activity. AKB-4924 impairs infection in uroepithelial cells and bladders, and could be correlated with enhanced production of nitric oxide and antimicrobial peptides cathelicidin and β-defensin-2. We conclude that HIF-1α transcriptional regulation plays a key role in defense of the urinary tract against UPEC infection, and that pharmacological HIF-1α boosting could be explored further as an adjunctive therapy strategy for serious or recurrent UTI

    The effect of puberty on the development of early diabetic microvascular disease in insulin-dependent diabetes

    No full text
    We studied the prevalence of early diabetic retinopathy and nephropathy in 21 prepubertal and 55 late-pubertal subjects with insulin-dependent diabetes (IDD). All subjects had IDD of 5–7 years duration at the time of evaluation. The prevalence of early diabetic retinopathy was significantly greater in the late-pubertal subjects than prepubertal subjects (33% vs. 9.5%, P = 0.05), despite similar glycosylated hemoglobin values between the two groups (11.7 ± 2.7% vs. 10.1 ± 1.6%) at the time of evaluation. Nephropathy was infrequent in late-pubertal subjects (9%), and absent in the prepubertal subjects. We hypothesize that puberty plays an important role in the development of microvascular complications of IDD, and that increases in growth factors, sex hormones and deterioration in glycemic control at the time of puberty may each enhance the development of diabetic microvascular disease

    Contribution of epithelial innate immunity to systemic protection afforded by prolyl hydroxylase inhibition in murine colitis

    Get PDF
    Pharmacological stabilization of hypoxia-inducible factor (HIF) through prolyl hydroxylase (PHD) inhibition limits mucosal damage associated with models of murine colitis. However, little is known about how PHD inhibitors (PHDi) influence systemic immune function during mucosal inflammation or the relative importance of immunological changes to mucosal protection. We hypothesized that PHDi enhances systemic innate immune responses to colitis-associated bacteremia. Mice with colitis induced by trinitrobenzene sulfonic acid were treated with AKB-4924, a new HIF-1 isoform-predominant PHDi, and clinical, immunological, and biochemical endpoints were assessed. Administration of AKB-4924 led to significantly reduced weight loss and disease activity compared with vehicle controls. Treated groups were pyrexic but did not become subsequently hypothermic. PHDi treatment augmented epithelial barrier function and led to an approximately 50-fold reduction in serum endotoxin during colitis. AKB-4924 also decreased cytokines involved in pyrogenesis and hypothermia, significantly reducing serum levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α while increasing IL-10. Treatment offered no protection against colitis in epithelial-specific HIF-1α-deficient mice, strongly implicating epithelial HIF-1α as the tissue target for AKB-4924-mediated protection. Taken together, these results indicate that inhibition of prolyl hydroxylase with AKB-4924 enhances innate immunity and identifies that the epithelium is a central site of inflammatory protection afforded by PHDi in murine colitis. © 2014 Society for Mucosal Immunology
    corecore