2,962 research outputs found
ESTSS at 20 years: "a phoenix gently rising from a lava flow of European trauma"
Roderick J. Ørner, who was President between 1997 and 1999, traces the phoenix-like origins of the European Society for Traumatic Stress Studies (ESTSS) from an informal business meeting called during the 1st European Conference on Traumatic Stress (ECOTS) in 1987 to its emergence into a formally constituted society. He dwells on the challenges of tendering a trauma society within a continent where trauma has been and remains endemic. ESTSS successes are noted along with a number of personal reflections on activities that give rise to concern for the present as well as its future prospects. Denial of survivors' experiences and turning away from survivors' narratives by reframing their experiences to accommodate helpers' theory-driven imperatives are viewed with alarm. Arguments are presented for making human rights, memory, and ethics core elements of a distinctive European psycho traumatology, which will secure current ESTSS viability and future integrity
Modular group algebras with almost maximal Lie nilpotency indices. I
Let K be a field of positive characteristic p and KG the group algebra of a
group G. It is known that, if KG is Lie nilpotent, then its upper (or lower)
Lie nilpotency index is at most |G'|+1, where |G'| is the order of the
commutator subgroup. The authors have previously determined the groups G for
which this index is maximal and here they determine the G for which it is
`almost maximal', that is the next highest possible value, namely |G'|-p+2
Generalized Shortest Path Kernel on Graphs
We consider the problem of classifying graphs using graph kernels. We define
a new graph kernel, called the generalized shortest path kernel, based on the
number and length of shortest paths between nodes. For our example
classification problem, we consider the task of classifying random graphs from
two well-known families, by the number of clusters they contain. We verify
empirically that the generalized shortest path kernel outperforms the original
shortest path kernel on a number of datasets. We give a theoretical analysis
for explaining our experimental results. In particular, we estimate
distributions of the expected feature vectors for the shortest path kernel and
the generalized shortest path kernel, and we show some evidence explaining why
our graph kernel outperforms the shortest path kernel for our graph
classification problem.Comment: Short version presented at Discovery Science 2015 in Banf
Spectral Sparsification and Regret Minimization Beyond Matrix Multiplicative Updates
In this paper, we provide a novel construction of the linear-sized spectral
sparsifiers of Batson, Spielman and Srivastava [BSS14]. While previous
constructions required running time [BSS14, Zou12], our
sparsification routine can be implemented in almost-quadratic running time
.
The fundamental conceptual novelty of our work is the leveraging of a strong
connection between sparsification and a regret minimization problem over
density matrices. This connection was known to provide an interpretation of the
randomized sparsifiers of Spielman and Srivastava [SS11] via the application of
matrix multiplicative weight updates (MWU) [CHS11, Vis14]. In this paper, we
explain how matrix MWU naturally arises as an instance of the
Follow-the-Regularized-Leader framework and generalize this approach to yield a
larger class of updates. This new class allows us to accelerate the
construction of linear-sized spectral sparsifiers, and give novel insights on
the motivation behind Batson, Spielman and Srivastava [BSS14]
A sufficient condition for a number to be the order of a nonsingular derivation of a Lie algebra
A study of the set N_p of positive integers which occur as orders of
nonsingular derivations of finite-dimensional non-nilpotent Lie algebras of
characteristic p>0 was initiated by Shalev and continued by the present author.
The main goal of this paper is to show the abundance of elements of N_p. Our
main result shows that any divisor n of q-1, where q is a power of p, such that
, belongs to N_p. This extends its special
case for p=2 which was proved in a previous paper by a different method.Comment: 10 pages. This version has been revised according to a referee's
suggestions. The additions include a discussion of the (lower) density of the
set N_p, and the results of more extensive machine computations. Note that
the title has also changed. To appear in Israel J. Mat
The Computational Power of Optimization in Online Learning
We consider the fundamental problem of prediction with expert advice where
the experts are "optimizable": there is a black-box optimization oracle that
can be used to compute, in constant time, the leading expert in retrospect at
any point in time. In this setting, we give a novel online algorithm that
attains vanishing regret with respect to experts in total
computation time. We also give a lower bound showing
that this running time cannot be improved (up to log factors) in the oracle
model, thereby exhibiting a quadratic speedup as compared to the standard,
oracle-free setting where the required time for vanishing regret is
. These results demonstrate an exponential gap between
the power of optimization in online learning and its power in statistical
learning: in the latter, an optimization oracle---i.e., an efficient empirical
risk minimizer---allows to learn a finite hypothesis class of size in time
. We also study the implications of our results to learning in
repeated zero-sum games, in a setting where the players have access to oracles
that compute, in constant time, their best-response to any mixed strategy of
their opponent. We show that the runtime required for approximating the minimax
value of the game in this setting is , yielding
again a quadratic improvement upon the oracle-free setting, where
is known to be tight
- …
