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A subset S of a finite group G invariably generates G if G = 〈sg(s) |
s ∈ S〉 for each choice of g(s) ∈ G , s ∈ S . We give a tight upper
bound on the minimal size of an invariable generating set for an
arbitrary finite group G . In response to a question in Kowalski
and Zywina (2010) [KZ] we also bound the size of a randomly
chosen set of elements of G that is likely to generate G invariably.
Along the way we prove that every finite simple group is invariably
generated by two elements.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

For many years there has been a rapidly growing literature concerning the generation of finite
groups. This has involved the number d(G) of generators of a group G , or the expected number
E(G) of random choices of elements in order to probably generate G , among other group-theoretic
invariants. In this paper we will study further invariants.

Dixon [Di1] began the probabilistic direction for generating (almost) simple groups, and later he
also introduced yet another direction based on the goal of determining Galois groups [Di2]. This has
led to the following notions:
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Definition. Let G be a finite group.

(a) A subset S of G invariably generates G if G = 〈sg(s) | s ∈ S〉 for each choice of g(s) ∈ G , s ∈ S [Di2].
(b) Let dI (G) := min{|S| | S invariably generates G}.
(c) The Chebotarev invariant C(G) of G is the expected value of the random variable n that is minimal

subject to the requirement that n randomly chosen elements of G invariably generate G [KZ].

There have been several papers discussing (a) for specific groups (such as finite simple groups)
[LuP,NP,Sh,FG1,KZ], but not for finite groups in general. Concerning (c), recall Chebotarev’s Theorem
that provides elements of a suitable Galois group G , where the elements are obtained only up to
conjugacy in G; the interest in (c) comes from computational group theory, where there is a need to
know how long one should expect to wait in order to ensure that choices of representatives from the
conjugacy classes provided by Chebotarev’s Theorem will generate G . This is discussed more carefully
in [Di2,KZ].

Our main results are the next two theorems, which depend on the classification of the finite simple
groups.

Theorem 1.1. Every finite group G is invariably generated by at most log2 |G| elements.

This bound is best possible: we show that dI (G) = log2 |G| if and only if G is an elementary
abelian 2-group. It is trivial that d(G) � log2 |G| using Lagrange’s Theorem. However, dI (G) may be
much larger than d(G): Proposition 2.5 states that, for every r � 1, there is a finite group G such that
d(G) = 2 but dI (G) � r. Theorem 3.1 contains a more precise statement of Theorem 1.1 involving the
length and structure of a chief series of G .

Theorem 1.2. There exists an absolute constant c such that

C(G) � c|G|1/2(log |G|)1/2

for all finite groups G.

This bound is close to best possible: it is easy to see that sharply 2-transitive groups provide an
infinite family of groups G for which C(G) ∼ |G|1//2 (compare [KZ, Section 4]). In fact [KZ, Section 9]
asks whether C(G) = O (|G|1/2) for all finite groups G (which we view as rather likely).

For an arbitrary finite group it is interesting to compare dI (G) with d(G), and C(G) with E(G).
The upper bounds for dI (G) and d(G) are identical, although (as stated above) these quantities may
be very different. On the other hand, E(G) � ed(G) + 2e log log |G| + 11 = O (log |G|) [Lu], which is far
smaller than the bound in Theorem 1.2.

We will need the following result of independent interest.

Theorem 1.3. Every non-abelian finite simple group is invariably generated by 2 elements.

In fact, for proofs of Theorems 1.1 and 1.2 we will need slightly stronger results on simple groups
involving automorphisms as well (cf. Theorems 5.1 and 5.5). The same week that we proved these
results about simple groups essentially the same result as Theorem 5.1 with a roughly similar proof
was posted in [GM2].

Dealing with simple groups uses the rather large literature of known properties of those groups.
The fact that, for finite simple groups G , dI (G) and C(G) are bounded by some (unspecified) constant
c follows for alternating groups from [LuP] (cf. [KZ]), and for Lie type groups from results announced
in [FG1] related to “Shalev’s ε-Conjecture”, which concerns the number of fixed-point-free elements
in simple permutation groups (cf. Section 4).

The proof of Theorem 1.2 uses bounds in [CC] and [FG1] on the number of fixed-point-free ele-
ments of a transitive permutation group, together with a recent bound on the number of maximal
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subgroups of a finite group [LPS]. We note that an explicit formula for C(G) is given in [KZ, Proposi-
tion 2.7], but we have not been able to use it since it appears to be too difficult to evaluate its terms
for most groups G .

The proofs of Theorems 1.1, 1.2 and 1.3 are given in Sections 3, 4 and 5, respectively. Section 2
contains the aforementioned result on the non-relationship of d(G) and dI (G), as well as a character-
ization of nilpotent groups as those finite groups all of whose generating sets invariably generate.

This paper is dedicated to Bob Guralnick, who has made fundamental contributions in the various
areas involved in this and other papers of ours.

2. Preliminary results and examples

Unless otherwise stated, we assume that the group G is finite. If X, Y ⊆ G , we say that Y is similar
to X if there is a function f : X → Y such that f (X) = Y and, for each x ∈ X , f (x) is conjugate in G
to x. Thus X invariably generates G if and only if 〈Y 〉 = G for each Y ⊆ G that is similar to X .

Let Max(G) denote the set of maximal subgroups of G . Let M = M(G) be a set of representatives
of conjugacy classes of maximal subgroups of G .

If M ∈ Max(G), write

M̃ =
⋃
g∈G

M g and v(M) = |M̃|
|G| .

Clearly M̃1 = M̃2 if the maximal subgroups M1, M2 are conjugate in G . Also, M̃ is the set of elements
of G having at least one fixed point in the primitive permutation representation of G on the set G/M
of (left) cosets of M in G .

Lemma 2.1. A subset X ⊆ G generates G invariably if and only if X � M̃ for all M ∈ M.

Proof. If X ⊆ M̃ for some M ∈ M then each element of X is conjugate to an element of M , and hence
X does not generate G invariably. Conversely, if X does not generate G invariably, then there exists a
set Y similar to X such that 〈Y 〉 	= G . Hence (using the finiteness of G) there exist M ∈ M and g ∈ G
such that 〈Y 〉 ⊆ M g , and hence X ⊆ M̃ . �

The “only if” part of the above lemma also holds for infinite groups. Moreover, the proof shows
that X ⊆ G generates an arbitrary group G invariably only if X � H̃ for all H < G . This enables us
to show that some infinite groups are not invariably generated by any set of elements. For example,
there are countable groups G all of whose nontrivial elements are conjugate [HNN] (and even 2-
generated groups with this property [Os]), so that H̃ = G for every nontrivial subgroup H and hence
even G itself does not generate G invariably.

However, for finite groups there are no anomalies of this kind, since H̃ 	= G for all proper sub-
groups H . In fact, if k(G) denotes the number of conjugacy classes of (elements of) the finite group
G , then we have

Lemma 2.2. For any finite group G we have dI (G) � k(G). Moreover, dI (G) is at most the number of conjugacy
classes of cyclic subgroups of G.

Proof. If H is the subgroup of G generated by a set of cyclic subgroups, one from each conjugacy
class, then the union of all conjugates of H is G , and hence H = G . �

For k � 1, let P I (G,k) be the probability that k randomly chosen elements of G generate G invari-
ably.

Lemma 2.3. maxM∈M v(M)k � 1 − P I (G,k) �
∑

M∈M v(M)k.
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Proof. Let g1, . . . , gk ∈ G be randomly chosen. Given M ∈ M, the probability that gi ∈ M̃ for all i is
v(M)k . Both inequalities now follow easily from Lemma 2.1. �

We next characterize nilpotent groups in terms of invariable generation.

Proposition 2.4. A finite group G is nilpotent if and only if every generating set of G invariably generates G.

Proof. Let Φ(G) denote the Frattini subgroup of G . Then a subset of G generates G if and only if its
image in G/Φ(G) generates G/Φ(G).

Suppose G is nilpotent. Then G/Φ(G) is abelian. Suppose X ⊆ G generates G , and let Y ⊆ G be
similar to X . Clearly the images of X and Y in the abelian group G/Φ(G) coincide. Since the image
of X generates G/Φ(G), so does the image of Y . It follows that Y generates G . We conclude that X
invariably generates G .

Now suppose G is not nilpotent. We shall construct a generating set X for G that does not generate
G invariably using a theorem of Wielandt [Rob, p. 132]: if G/Φ(G) is abelian then G is nilpotent. Then
G/Φ(G) is not abelian, and hence some maximal subgroup M of G is not normal in G . Let g ∈ G with
M g 	= M . Let x ∈ M g \ M and X := M ∪ {x}. Then 〈X〉 = G since M is maximal, so that M ∪ {xg−1 } = M
is similar to X and is proper in G . This implies that X does not generate G invariably. �

In particular, for nilpotent G we have dI (G) = d(G). For simple groups, by Theorem 1.3 we also
have the same equality (with both sides 2). However, our next result shows that, in general, dI (G) is
not bounded above by any function of d(G):

Proposition 2.5. For every r � 1 there is a finite group G such that d(G) = 2 but dI (G) � r.

This group G will be a power T k of an alternating group T . For this purpose we recall an elemen-
tary criterion in [KL, Proposition 6]:

Proposition 2.6. Let G = T k for a non-abelian finite simple group T . Let S = {s1, . . . , sr} ⊂ G, so that si =
(ti

1, . . . , ti
k), ti

j ∈ T . Form the matrix

A =
( t1

1 · · · t1
k· · ·

tr
1 · · · tr

k

)
.

Then S generates G if and only if the following both hold:

(a) If 1 � j � k then T = 〈t1
j , . . . , tr

j〉; and
(b) The columns of A are in different Aut(T )-orbits for the diagonal action of Aut(T ) on T r .

Proof of Proposition 2.5. Fix n, let T = An and let k = k(n) be the largest integer such that d(G) = 2,
where G := Gn = T k . Then k � n!/8 ([KL, Example 2], obtained from Proposition 2.6).

Let S be as in Proposition 2.6, and assume that S invariably generates G . Then we can arbitrarily
conjugate each ti

j independently and still generate G . Let C(T ) denote the set of conjugacy classes

of T . Project each column β j of A to β̄ j ∈ C(T )r . In view of conditions (a) and (b) in Proposition 2.6,
the β̄ j are in different Aut(T )-orbits of the diagonal action on C(T )r .

The number of conjugacy classes in T is at most c
√

n , so |C(T )|r � cr
√

n . The number of projections
β̄ j is k (since 1 � j � k), where k � n!/8. Then cr

√
n � n!/8 by the Pigeon Hole Principle, so that

|S| = r � C
√

n logn. �
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3. Proof of Theorem 1.1

Let l(G) denote the length of a chief series of G . The following is a stronger version of Theorem 1.1:

Theorem 3.1. Let G be a finite group having a chief series with a abelian chief factors and b non-abelian chief
factors. Then

dI (G) � a + 2b.

In particular, dI (G) � 2l(G), and if G is solvable then dI (G) � l(G).

Proof. We use induction on |G| (the case |G| = 1 being trivial). Suppose |G| > 1 and let N � G be a
minimal normal subgroup of G . It suffices to show that

dI (G) � dI (G/N) + c,

where c = 1 if N is abelian and c = 2 if N is non-abelian. In the latter case our proof relies on
Theorem 5.1 (proved below).

Let X ⊆ G be a set of size dI (G/N) whose image in G/N generates G/N invariably.
Suppose first that N is abelian. Let x ∈ N be any non-identity element of N . We claim that

Y = X ∪ {x} invariably generates G . Indeed, suppose Z ⊆ G is similar to Y . Then the image of Z in
G/N generates G/N (by the assumption on X ). Moreover, Z contains a conjugate z = xg that is a
non-identity element of N . Since G/N acts irreducibly on N , 〈Z〉 � N . It follows that 〈Z〉 = G , so Y
generates G invariably. Thus dI (G) � dI (G/N) + 1 in this case.

Now suppose N is non-abelian. Then N = T1 × · · · × Tk , where k � 1 and the Ti are non-abelian
finite simple groups such that the conjugation action of G on N induces a transitive action of G/N on
the set {T1, . . . , Tk}.

The group A := NG(T1)/CG (T1) is an almost simple group with socle T �
1 := T1CG (T1)/CG (T1) ∼= T1.

By Theorem 5.1, there are elements x1 ∈ T �
1 , x2 ∈ A such that 〈xa1

1 , xa2
2 〉 � T �

1 for all a1,a2 ∈ A. Let
y1 ∈ T1, y2 ∈ NG(T1), be pre-images of x1, x2, respectively. We claim that Y := X ∪ {y1, y2} invariably
generates G .

To see this, let Z be a set similar to Y , so Z = X ′ ∪ {yg1
1 , yg2

2 } where X ′ is similar to X and
gi ∈ G (i = 1,2). We need to show that Z generates G . Let K = 〈Z〉 and H = 〈X ′〉. Since X invariably
generates G modulo N we have H N = G . Hence H acts transitively (by conjugation) on {T1, . . . , Tk}.

Moreover, T g1
1 = Ti and T g2

1 = T j for some i, j. By the transitivity of H there are elements h1,h2 ∈
H such that T h1

i = T1 and T h2
j = T1. Then g1h1, g2h2 ∈ NG(T1).

Clearly yg1h1
1 ∈ T g1h1

1 = T1 and yg2h2
2 ∈ NG(T1)

g2h2 = NG(T1). Then yg1h1
1 and yg2h2

2 induce au-

tomorphisms of T1 by conjugation. In view of our choice of x1 and x2, 〈yg1h1
1 , yg2h2

2 〉 induces all

inner automorphisms of T1. In particular, the conjugates of the element yg1h1
1 ∈ T1 under this group

generate the simple group T1. Thus, K � 〈yg1h1
1 , yg2h2

2 , H〉 � T1, so that K � Ti for all i and hence
G = K N = K , as required.

We see that dI (G) � dI (G/N) + 2 in the non-abelian case. This completes the proof of the first
assertion in the theorem. The last two assertions follow immediately. �

We can now complete the proof of Theorem 1.1. Let G , a, b be as above. Every abelian chief factor of G
has order at least 2, while every non-abelian chief factor has order at least 60. This yields |G| � 2a60b ,
so that

log2 |G| � a + (log2 60)b � a + 2b � dI (G),
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as required. Moreover, if dI (G) = log2 |G| then we must have b = 0, and all chief factors of G have
order 2. Thus G is a 2-group, so that dI (G) = d(G) = log2 |G| by Proposition 2.4. Now d(G) = log2 |G|
easily implies that G is an elementary abelian 2-group. �

Note that the bound in Theorem 3.1 is tight both for non-abelian simple groups and for elementary
abelian p-groups.

4. Proof of Theorem 1.2

The main result of this section is the following.

Theorem 4.1. For any ε > 0 there exists c = c(ε) such that P I (G,k) � 1 − ε for any finite group G and any
k � c|G|1/2(log |G|)1/2 .

Proof. For M � G let MG = ⋂
g∈G M g denote the core of M in G , the kernel of the permutation action

of G on the set of conjugates of M .
Divide the set M of representatives of conjugacy classes of maximal subgroups of G into three

subsets M1, M2, M3 as follows. The set M1 consists of the subgroups M ∈ M such that the
primitive group G/MG is not of affine type. The set M2 consists of the subgroups M ∈ M such
that the primitive group G/MG is of affine type and |G: M| � |G|1/2/(log |G|)1/2. Finally, M3 con-
sists of the remaining subgroups in M, namely the subgroups M such that G/MG is affine and
|G: M| > |G|1/2/(log |G|)1/2.

By [LPS, Theorem 1.3], for any finite group G we have |Max(G)| � c1|G|3/2, where c1 is an absolute
constant. In particular, for i = 1,2,3,

|Mi | � |M| � c1|G|3/2.

Fix k � 1 and let g1, . . . , gk ∈ G be randomly chosen (we will restrict k in later parts of the proof).
By Lemma 2.1,

1 − P I (G,k) � P1 + P2 + P3,

where Pi is the probability that g1, . . . , gk ∈ M̃ for some M ∈ Mi (i = 1,2,3). It suffices to show that,
for k as in the statement of the theorem, Pi < ε/3 for i = 1,2,3.

We bound each of the probabilities Pi separately. By increasing the constant c we may assume
that |G| is as large as required in various parts of the proof.

The set M1. To bound P1 we use [FG1, Theorem 8.1]: the proportion of fixed-point-free permu-
tations in a non-affine primitive group of degree n is at least c2/ log n, for some absolute constant
c2 > 0. This shows that, for M ∈ M1,

v(M) � 1 − c2/ log |G: M| � 1 − c2/ log |G|.

By Lemma 2.3 and its proof,

P1 �
∑

M∈M1

v(M)k � |M1|
(
1 − c2/ log |G|)k � c1|G|3/2(1 − c2/ log |G|)k

.

Since (1−x)k � exp(−kx) for 0 < x < 1, for any c3 > log c1 +3/2 the right-hand side is bounded above
by exp(c3 log |G| − c2k/log |G|). If k > c4(log |G|)2 for a suitable absolute constant c4, then the latter
expression tends to zero as |G| → ∞, and hence so does P1. In particular we have P1 < ε/3 for |G|
large enough.
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The set M2. We next bound P2. Here our main tool is the theorem that the proportion of fixed-
point-free elements in any transitive permutation group of degree n is at least 1/n [CC]. This implies
that, if M ∈ M2, then

v(M) � 1 − |G : M|−1 � 1 − (|G|/ log |G|)−1/2
.

Therefore

P2 �
∑

M∈M2

v(M)k � |M2|
(
1 − (|G|/ log |G|)−1/2)k � c1|G|3/2(1 − (|G|/ log |G|)−1/2)k

.

As before the right side is bounded above by exp(c3 log |G| − k(|G|/ log |G|)−1/2) for suitable c3 > 3/2.
This in turn tends to zero as |G| → ∞ for any k > c5|G|1/2(log |G|)1/2, for arbitrary c5 > c3. Therefore
P2 → 0 for such k, and P2 < ε/3 for all sufficiently large |G|.

The set M3. Finally we bound P3. If M ∈ M3 then G/MG = V � H , where V is an elementary
abelian p-group for some prime p, acting regularly on the set of cosets of M in G , and H is a point-
stabilizer acting irreducibly on V .

Fix a chief series {Gi} of G . Fix M ∈ M3, and let π : G → G/MG be the canonical projection. The
series {π(Gi)} of normal subgroups of π(G) = G/MG descends from G/MG = V � H to 1. If i is
minimal such that π(Gi+1) = 1, then π(Gi) is a minimal normal subgroup of G/MG , and hence is V ,
the unique minimal normal subgroup of G/MG . In this situation we shall say that M uses Gi/Gi+1, in
which case Gi/Gi+1 ∼= V . (For, since π(Gi) = π(Gi)/π(Gi+1) is a nontrivial G-homomorphic image of
Gi/Gi+1 it is isomorphic to Gi/Gi+1.) We have seen that every M ∈ M3 uses Gi/Gi+1 for a unique i.
Moreover, since M ∈ M3,

|Gi : Gi+1| = |V | = |G : M| > (|G|/ log |G|)1/2
.

We claim that, if G is sufficiently large, then it has at most two abelian chief factors used by any maximal
subgroups in M3. Indeed, if there were (at least) three such chief factors, appearing at places i > j > l
in our chief series, then we would obtain the contradiction

|G| � |Gi: Gi+1||G j: G j+1||Gl: Gl+1| >
((|G|/ log |G|)1/2)3

.

Fix an abelian chief factor V = Gi/Gi+1 of G as above. Then each g ∈ Gi \ Gi+1 acts fixed-point-
freely on the cosets of any M that uses Gi/Gi+1 (since gMG ∈ V \ {1}). For each such M we have
M̃ ⊆ G \ (Gi \ Gi+1). Since

|G: Gi | � |G|/|Gi: Gi+1| = |G|/|V | � (|G| log |G|)1/2

by the definition of M3, the proportion of elements g ∈ Gi \ Gi+1 inside G is at least 1
2 |G: Gi |−1 �

1
2 (|G| log |G|)−1/2. Since the union of M̃k over all M using Gi/Gi+1 is contained in (G \ (Gi \ Gi+1))

k ,
it follows that the probability that randomly chosen elements g1, . . . , gk of G all lie in M̃ for some
such M is at most (1 − 1

2 (|G| log |G|)−1/2)k . Although there may be many choices for M in M3, there
are at most two choices for the chief factor Gi/Gi+1. Thus,

P3 � 2

(
1 − 1

2

(|G| log |G|)−1/2
)k

� 2 exp

(
−k

2

(|G| log |G|)−1/2
)

,

where the right-hand side is less than ε/3 for k � c(|G| log |G|)1/2 for some c = c(ε).
Our bounds on the three probabilities Pi complete the proof. �
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Remark. Recall that the ε-conjecture, posed by the third author of this paper, states that there exists
an absolute constant ε > 0 such that the proportion of fixed-point-free elements in any finite simple
transitive permutation group is at least ε . This amounts to saying that v(M) � 1 − ε for any finite
simple group G and any M ∈ Max(G). This conjecture holds for alternating groups [LuP] and for Lie
type groups of bounded rank [FG1, Sections 3 and 4]. Moreover, in [FG1, Theorem 1.3] it is announced
that the ε-conjecture holds in general, and proofs in some additional cases appear in [FG2]. When
M ∈ M1 our proof of Theorem 4.1 uses [FG1, Theorem 8.1], which in turn relies on the ε-conjecture.
However, we now show that Theorem 5.5 below easily yields a weaker version of [FG1, Theorem 8.1]
that still suffices for our purpose.

The set M1 revisited. Namely, we claim that there exists c2 > 0 such that

v(M) � 1 − c2
(
log |G|)−2|G|−1/3,

where G is any non-affine primitive permutation group and M is a point-stabilizer. For, if s1, s2 generate
G invariably, and if M ∈ Max(G), then M̃ ∩ sG

i = ∅ for i = 1 or 2, in which case v(M) � 1 − |sG
i |/|G|.

Then v(M) � 1 − 1
2 |G|−1/3 for each sufficiently large finite simple group G and each such M , by

Theorem 5.5. This implies that, for all finite simple groups G and all M ∈ Max(G), we have v(M) �
1 − c3|G|−1/3 for some constant c3 > 0.

Consequently, if G is an almost simple group with socle T then, since |Out(T )| � c4 log |T | (cf.
[GLS, Section 2.5]), we easily obtain

v(M) � 1 − c5
(
log |G|)−1|G|−1/3

for all M ∈ Max(G) not containing T , for some c5 > 0. Our claim follows by combining this inequality
with the reduction to almost simple groups given in the proof of [FG1, Theorem 8.1].

Thus, if M ∈ M1, then the above claim yields

P1 �
∑

M∈M1

v(M)k � c1 log |G|(1 − c2
(
log |G|)−2|G|−1/3)k

.

The right-hand side tends to zero when k � c6(log |G|)3|G|1/3; but for the proof of Theorem 4.1 we
can assume the stronger inequality k � c7|G|1/2(log |G|)1/2. Consequently P1 → 0, as required.

Completion of proof of Theorem 1.2. Apply Theorem 4.1 with ε = 1/2 and let c = c(1/2). Let k =
�c|G|1/2(log |G|)1/2�. Then k randomly chosen elements of G invariably generate G with probability at
least 1/2. This implies that

C(G) � 2k � (2c + 1)|G|1/2(log |G|)1/2
. �

Corollary 4.2.

(a) If G is a finite group without abelian composition factors, then C(G) = O ((log |G|)2).
(b) If G is an almost simple group, then C(G) = O (log |G| log log |G|).

Proof. We have already seen (a) in our first treatment of the non-affine case (M ∈ M1) of Theo-
rem 4.1.

To prove (b) we first note that, for some c > 0 and all M ∈ M, we have v(M) � 1 − c/ log |G|.
Indeed, if M has trivial core then this follows from [FG1, Theorem 8.1] (and hence from the cor-
rectness of the ε-conjecture stated above). Otherwise, M contains the simple socle T of G , and
|G/T | � |Out(T )| � c4 log |T | � c4 log |G| as noted above. In this situation, if g ∈ G acts fixed-point-
freely on the cosets of M in G , so do all the elements of gT , so that v(M) � 1 − c−1

4 / log |G|.
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By [GLT, Theorem 1.3], |M| � c1(log |G|)3 when G is almost simple. This yields∑
M∈M

v(M)k � c1
(
log |G|)3(

1 − c/ log |G|)k � c1
(
log |G|)3

exp
(−ck/ log |G|).

The right-hand side tends to zero as |G| → ∞ when k � c2 log |G| log log |G|. This proves part (b). �
We observe that the bound in (b) is almost best possible, up to the log log |G| factor. To show this we

use the following example [FG1, p. 115]. Fix any prime p. Let G = PSL(2, pb).b, the extension of the
simple group by the group B of b field automorphisms, where b is a prime not dividing p(p2 − 1).
Let G act on the cosets of the maximal subgroup NG(B) of G . Then all fixed-point-free elements are
contained in the socle of G , so their proportion is less than 1/b. Therefore v(M) � 1 − 1/b.

Hence, by Lemma 2.3, P I (G,k) � 1 − (1 − 1/b)k , so that for sufficiently large b we obtain

P I (G,k) � 1 − (
1 − c1/ log |G|)k � 1 − exp

(−c2k/ log |G|),
where c1, c2 are suitable constants. Thus P I (G,k) � 1/2 for all k � c3 log |G|, where c3 > 0 is an
absolute constant. The probability that it takes at least k + 1 random choices of elements to invariably
generate G is 1 − P I (G,k). By the definition of the expectancy C(G) we have C(G) � (k + 1)(1 −
P I (G,k)). If k = [c3 log |G|] then 1 − P I (G,k) � 1/2 and k + 1 � c3 log |G|. This yields C(G) � (k +
1)(1/2) � (c3/2) log |G|.

5. Simple groups

We will prove the following slightly stronger version of Theorem 1.3:

Theorem 5.1. Let G be a finite simple group.

(a) If G is not one of the groups P�+(8,q), q = 2 or 3, then there are two elements s1, s2 ∈ G such that
G = 〈sg1

1 , sg2
2 〉 for each choice of gi ∈ Aut(G).

(b) If G is P�+(8,q), q = 2 or 3, and if G � G� � Aut(G), then there are elements s1 ∈ G, s2 ∈ G� such that
G � 〈sg1

1 , sg2
2 〉 for each choice of gi ∈ G� .

Of course, Theorem 1.3 is just (a) using inner automorphisms. This theorem is also obtained in
[GM2, Theorem 7.1], along with the fact that P�+(8,2) is an actual exception.

We begin with the easiest case:

Lemma 5.2. Theorem 5.1 holds for each alternating group An, n � 5.

Proof. If n 	= 6 then Aut(An) = Sn . For even n > 6 use the product of a disjoint 2-cycle and (n − 2)-
cycle, and the product of a disjoint p-cycle and (n − p)-cycle for a prime p � n − 3 not dividing n; it
is easy to check that such a prime exists. These two elements generate a group H that is readily seen
to be transitive and even primitive. Since H contains a p-cycle, H = An by a classical result of Jordan
[Wie, Theorem 13.9].

If n is odd then an n-cycle and a p-cycle can be used in the same manner, for an odd prime
p � n − 3 not dividing n.

Finally, A6 is generated by any elements of order 4 and 5. �
For groups of Lie type we will use the knowledge of all maximal overgroups M of a carefully

chosen semisimple element t1. Then, by Lemma 2.1, we only need to choose an Aut(G)-conjugacy
class of elements that does not meet the union of the corresponding sets M̃ . Our arguments differ
from those in [GM2] primarily due to that paper using [GM1] whereas we rely more on the earlier
paper [MSW].
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Table 1
Classical groups.

Quasisimple G |t1| t1 on V |t2| t2 on V

SL(n,q), n odd (qn − 1)/(q − 1) n (qn−1 − 1)/(q − 1) (n − 1) ⊕ 1
SL(n,q), n � 4 even (qn−1 − 1)/(q − 1) (n − 1) ⊕ 1 (qn − 1)/(q − 1) n
Sp(2m,q), m � 2 qm + 1 2m lcm(qm−1 + 1,q + 1) (2m − 2) ⊥ 2
Ω(2m + 1,q), q odd (qm + 1)/2 2m− ⊥ 1 (qm − 1)/2 (m ⊕ m) ⊥ 1
Ω+(4k,q), n = 2n′ = 4k (qn′−1 + 1)/δ1 (n − 2)− ⊥ 2− lcm(qn′−2 + 1,q2 + 1)/δ2 (n − 4)− ⊥ 4−
Ω+(4k + 2,q), 2n′ = 4k + 2 (qn′−1 + 1)/δ1 (n − 2)− ⊥ 2− (qn′ − 1)/δ2 n′ ⊕ n′
Ω−(4k,q), n = 2n′ = 4k (qn′ + 1)/δ1 n− (qn′−1 − 1)/δ2 (n − 2)+ ⊥ 2−
Ω−(4k + 2,q) (q2k+1 + 1)/δ1 (4k + 2)− (q2k + 1)/δ2 4k− ⊥ 2+
SU(2m,q) q2m−1 + 1 (2m − 1) ⊥ 1 (q2m − 1)/(q + 1) 2m
SU(2m + 1,q) (qn + 1)/(q + 1) n qn−1 − 1 n − 1 ⊥ 1

Lemma 5.3. Theorem 5.1 holds for each classical simple group other than P�+(8,q).

Proof. We will consider the corresponding quasisimple linear group G , using semisimple elements
t1 and t2 in Table 1 that decompose the space as indicated in the table. (Here δi is 1 or 2, n is the
dimension of the underlying vector space V , and n′ = n/2. If an entry involves lcm(qi + 1,q j + 1) for
some i, j, then t2 induces irreducible elements of order qi + 1 or q j + 1 on the indicated subspaces
of dimension 2i or 2 j.)

In each case, t1 is the element called “s” in [MSW, Theorem 1.1]; if there is a 1- or 2-space in-
dicated then it is centralized. For each group G , all maximal overgroups of t1 are listed in [MSW,
Theorem 1.1]. Until the end of the proof we will exclude the case G = Sp(4,q). Then all automor-
phisms of G act on V , preserving the underlying geometry [GLS, Section 2.5]. It follows that all
Aut(G)-conjugates of ti act on V as ti does (for i = 1,2). We always use conjugates of t1 and t2
that have no assumed relationship to one another, so if the two elements studied generate G then
they invariably generate G .

If G is not SL(2,q), Sp(4,q) or Sp(8,2), then t1 and t2 invariably generate G by [MSW, Theo-
rem 1.1]: all of the exceptions in that theorem do not arise here due to the behavior of both t1 and
t2 on V . If G = Sp(8,2) then we replace t2 by another element, as follows. Let f ∈ G have order 5
and centralize a nondegenerate 4-space. Then CG( f ) = 〈 f 〉 × Sp(4,2). Let c = (1,2)(3,4,5,6) ∈ S6 ∼=
Sp(4,2) < CG ( f ). Then c /∈ S5 ∼= Ω−(4,2), and hence f c is not in an overgroup Ω−(8,2) of t1. Since
its order implies that f c is also not in any of the other maximal overgroups of t1 [MSW, Theorem 1.1],
it follows that t1 and f c invariably generate G .

Case SL(2,q). When q is 4,5 or 9, see Lemma 5.2. When q = 7, elements of order 7 and 4 invariably
generate G . For all other q � 4, the same t1 and t2 as indicated in the table (but with t1 acting
irreducibly on each 1-space) invariably generate G by [Di, Ch. XII].

Case Sp(4,q). We may assume that q � 4 since Sp(4,2) is not simple and PSp(4,3) ∼= PSU(4,2).
We again use t1 and t2 as in the table, such that t2 induces an element of order q + 1 inside the
Sp(2,q) produced by each factor in the decomposition 4 = 2 ⊥ 2. Once again t1 and t2 invariably
generate G by [MSW, Theorem 1.1]. �

We note that classical groups were considered in [NP, Section 10] from a probabilistic point of
view: a large number of pairs of elements was described that invariably generate various classical
groups. The group GL(n,q) was also handled in [Sh] for large n. All groups of Lie type also were dealt
with probabilistically, at least for bounded rank, in [FG1, Theorem 5.3].

Lemma 5.4. Theorem 5.1 holds for P�+(8,q).

Proof. Once again we will consider the corresponding linear group G = Ω+(8,q), using the properties
of Aut(G/Z(G)) contained in [GLS, Section 2.5]. We have G/Z(G) � G� � Aut(G/Z(G)).

(a) Suppose first that q > 3. We will use the same 〈t1〉 as above (mod Z(G)), of order (q3 +
1)/(2,q − 1). It acts on our space as 8+ = 6− ⊥ 2− , centralizing the 2-space.
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We also use an element t3 ∈ G of order (q3 − 1)/(2,q − 1). Here t3 decomposes our space as
8+ = (3 ⊕ 3) ⊥ (1 ⊕ 1) using totally singular 3- and 1-spaces, inducing isometries of order q − 1 on
the subspace 1 ⊕ 1 and of order q3 − 1 on the subspace 3 ⊕ 3, and hence acting irreducibly on the
indicated 3-spaces. Then t3 fixes exactly two singular 1-spaces, and two totally singular 4-spaces in
each G-orbit of such 4-spaces (each of the latter fixed subspaces has the form 3 ⊥ 1). If τ is any
automorphism of G/Z(G), then tτ3 has the same properties. In particular, neither t3 nor tτ3 fixes any
anisotropic 1- or 2-space for any τ ∈ Aut(G/Z(G)). (N.B.–This requires that q > 3: if q = 3 then the
analogous element t3 induces −1 on the 2+-space 1 ⊕ 1 and hence fixes all of its 1-spaces.) However,
by [MSW, Theorem 1.1] each maximal subgroup of G/Z(G) that contains t1 (mod Z(G)) either fixes
such a 1- or 2-space or its image under a triality automorphism behaves that way. Hence, there is no
maximal subgroup containing t1 and t3 mod Z(G), and we have invariably generated G/Z(G).

(b) From now on q � 3. First consider the case where G� acts (projectively) on V (this includes the
situation in Theorem 1.3). We use elements t3 and t4 of G/Z(G) of order (q4 − 1)/(4,q4 − 1) arising
from a decomposition 8+ = 4− ⊥ 2− ⊥ 2+ and from a decomposition 8+ = 4 ⊕ 4 into totally singular
4-spaces (the corresponding cyclic groups 〈ti〉 are conjugate under Aut(G/Z(G)) but not under G�).
The Sylow 5-subgroups of 〈t3〉 and 〈t4〉 behave differently on the vector space, and 〈t4〉 is an element
of order (q4 − 1)/(4,q4 − 1) that acts fixed-point-freely on V . Hence, by [Kl], 〈t3, t4〉 is contained in
no proper subgroup of G , so that 〈t3, t4〉 = G .

Finally, suppose that G� does not have any Aut(G/Z(G))-conjugate that acts on V . Here we re-
turn to the original setting of the theorem, now letting G denote the simple group P�+(8,q). Since
Out(G) ∼= S4 or S3, we may assume that G� contains a triality outer automorphism. Consequently,
there is a subgroup Z3 × SL(3,q) of G� that contains an element t5 of order 3(q2 + q + 1) such that

τ = tq2+q+1
5 is a triality automorphism and t3

5 acts projectively on V as 8+ = (3 ⊕ 3) ⊥ (1 ⊕ 1).
By [MSW, Theorem 1.1], 〈t1, t5〉 ∩ G � 〈t1, t3

5〉 is either G , Ω(7,q) or lies in A9 < Ω+(8,2). Since
〈t1, t5〉 ∩ G is invariant under τ , only the first of these can occur (for example, 〈t1, t5〉 ∩ G cannot be
A9 or PSL(2,8) < A9). Thus, t1 and t5 invariably generate G〈τ 〉. �

Completion of proof. In [GM1, Tables 6 and 9] there are lists of carefully chosen cyclic subgroups
of exceptional and sporadic simple groups, as well as all of the maximal overgroups M of those
subgroups. It is straightforward to use those tables to handle these final cases of Theorem 5.1. This
amounts to exhibiting an element order for G not appearing in any of the listed subgroups M . We
provide some details for the exceptional groups. Table 2 reproduces part of [GM1, Table 6]. Here
T1 is a cyclic maximal torus and M runs through the isomorphism types of maximal overgroups
of T1. (Notation: ε = ±1, Φn = Φn(q) is the nth cyclotomic polynomial evaluated at q, Φ ′

8 = Φ ′
8(q) =

q2 + √
2q + 1, Φ ′

12 = Φ ′
12(q) = q2 + √

3q + 1 and Φ ′
24 = Φ ′

24(q) = q4 + √
2q3 + q2 + √

2q + 1.) In each
case, the order of t2 guarantees that it is not contained in any of the listed maximal overgroups M
(there are also other choices for t2). Hence, a generator of T1 together with t2 behave as required in
the theorem. �

In Section 4 we needed a bit more information than in the preceding theorem for an alternative
proof of Theorem 4.1 and hence of Theorem 1.2:

Theorem 5.5. For all sufficiently large G in Theorem 5.1, the elements si can be chosen so that |sG
i | > |G|2/3/2

for i = 1,2.

Proof. This is a straightforward matter of examining each part of the proof of Theorem 5.1. In each
case we need to check that |CG(si)| < 2|G|1/3 for i = 1,2 and all sufficiently large |G|.

For alternating groups, when n is even each of the groups CG(s) is the direct product of two cyclic
groups, and hence has order satisfying the required bound. When n is odd the same holds if we
replace the p-cycle by the product of a disjoint p-cycle and an (n − p)-cycle (a power of which is a
p-cycle).

In Lemma 5.3–excluding SL(2,q)–we have |CG(T1)| ∼ qr and |CG(t2)| ∼ qr , where r is the rank
of the corresponding algebraic group. (For example, for SL(n,q) we have |CG(T1)| = (qn − 1)/(q − 1)
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Table 2
Exceptional groups.

G |T1| M � T1 Further max. |t2|
2 B2(q2), q2 � 8 Φ ′

8 NG (T1) – Φ ′
8(−q)

2G2(q2), q2 � 27 Φ ′
12 NG (T1) – Φ ′

12(−q)

G2(q), 3|q + ε q2 + εq + 1 SLε (3,q).2 PSL(2,13) (q = 4) q2 − εq + 1
G2(q), 3|q q2 + q + 1 SL(3,q).2 PSL(2,13) (q = 3) q2 − q + 1
3 D4(q) Φ12 NG (T1) – (q3 + 1)(q − 1)/(2,q − 1)
2 F4(q2), q2 � 8 Φ ′

24 NG (T1) – Φ ′
24(−q)

F4(q) Φ12
3 D4(q).3 PSL(4,3).22,

2 F4(2) (q = 2),
PSL(4,3).22 (q = 2)

q4 + 1

E6(q) Φ9/(3,q − 1) SL(3,q3).3 – (q + 1)(q5 − 1)/(6,q − 1)
2 E6(q) Φ18/(3,q + 1) SU(3,q3).3 – (q − 1)(q5 + 1)/(6,q + 1)

E7(q) Φ2Φ18/(2,q − 1) 2 E6(q)sc .Dq+1 – Φ7/(2,q − 1)

E8(q) Φ30 NG (T1) – Φ24

or qn−1 − 1, for Sp(2m,q) we have |CG(t2)| � (qm−1 + 1)(q + 1), and for Ω+(4k + 2,q) we have
|CG(T1)| � (q2k + 1)(q + 1).) A straightforward calculation using |G| verifies that these bounds are
small enough for our purposes. When G = SL(2,q) we have |CG(T1)| = q + 1, so that |sG

i | > |G|2/3/2
and a denominator larger than 1 is essential. �

Random generation. We conclude with remarks concerning the random generation of finite simple
groups. All finite simple groups G are generated by two randomly chosen elements with probability
tending to 1 as |G| → ∞ [Di1,KL,LS]. We claim that this does not hold for invariable generation:
the probability that two–or any bounded number of–random elements of a finite simple group G invariably
generate G is bounded away from 1. To show this we need the following result that is implicit in [FG1].

Lemma 5.6. There exists an absolute constant ε > 0 such that any finite simple group G has a maximal
subgroup M for which v(M) � ε .

Proof. This is trivial for alternating groups An , where we take M to be a point-stabilizer in the natural
action, so v(M) ∼ 1 − e−1. For groups G of Lie type of bounded rank over a field with q elements we
may assume q is large, and then the result follows with M a maximal subgroup containing a maximal
torus (see the discussion in [FG1, start of Section 4]). For classical groups of large rank the result
follows from [FG1, Theorem 1.7]. Sporadic simple groups satisfy the conclusion trivially. �

This lemma can be considered as a kind of weak analogue of the ε-conjecture (stated above) but
in the opposite direction.

We can now deduce

Corollary 5.7. There is an absolute constant ε > 0 such that P I (G,k) � 1 − εk for all finite simple groups G
and positive integers k.

Proof. This follows by combining the above lemma with Lemma 2.3. �
In [FG1, p. 114] it is announced that, for any ε > 0, there is c = c(ε) such that P I (G,k) � 1 − ε

whenever G is a finite simple group of Lie type and k � c. The case of bounded rank is proved in
[FG1, Theorem 4.4], and a similar result for alternating groups was proved earlier in [LuP].

Using these results it follows that, for any function f : N → N such that f (n) → ∞ as n → ∞
(even if arbitrarily slowly), we have P I (G, f (|G|)) → 1 for finite simple groups G whose orders tend
to infinity.
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