5 research outputs found

    Catechol-O-Methyltransferase Expression and 2-Methoxyestradiol Affect Microtubule Dynamics and Modify Steroid Receptor Signaling in Leiomyoma Cells

    Get PDF
    CONTEXT: Development of optimal medicinal treatments of uterine leiomyomas represents a significant challenge. 2-Methoxyestradiol (2ME) is an endogenous estrogen metabolite formed by sequential action of CYP450s and catechol-O-methyltransferase (COMT). Our previous study demonstrated that 2ME is a potent antiproliferative, proapoptotic, antiangiogenic, and collagen synthesis inhibitor in human leiomyomas cells (huLM). OBJECTIVES: Our objectives were to investigate whether COMT expression, by the virtue of 2ME formation, affects the growth of huLM, and to explore the cellular and molecular mechanisms whereby COMT expression or treatment with 2ME affect these cells. RESULTS: Our data demonstrated that E(2)-induced proliferation was less pronounced in cells over-expressing COMT or treated with 2ME (500 nM). This effect on cell proliferation was associated with microtubules stabilization and diminution of estrogen receptor alpha (ERalpha) and progesterone receptor (PR) transcriptional activities, due to shifts in their subcellular localization and sequestration in the cytoplasm. In addition, COMT over expression or treatment with 2ME reduced the expression of hypoxia-inducible factor -1alpha (HIF-1 alpha) and the basal level as well as TNF-alpha-induced aromatase (CYP19) expression. CONCLUSIONS: COMT over expression or treatment with 2ME stabilize microtubules, ameliorates E(2)-induced proliferation, inhibits ERalpha and PR signaling, and reduces HIF-1 alpha and CYP19 expression in human uterine leiomyoma cells. Thus, microtubules are a candidate target for treatment of uterine leiomyomas. In addition, the naturally occurring microtubule-targeting agent 2ME represents a potential new therapeutic for uterine leiomyomas

    Prognostic Significance of Peritumoral Lymphatic Vessel Density and Vascular Endothelial Growth Factor Receptor 3 in Invasive Squamous Cell Cervical Cancer

    Get PDF
    Cervical cancer is known to metastasize primarily by the lymphatic system. Dissemination through lymphatic vessels represents an early step in regional tumor progression, and the presence of lymphatic metastasis is associated with a poor prognosis. In patients who have undergone a radical hysterectomy, lymphovascular space invasion (LVSI), assessed on hematoxylin and eosin-stained slides, is a major factor for adjuvant therapy in patients with cervical cancer. With the advent of a lymphatic endothelial cell-specific marker, such as D2-40, it is now possible to distinguish between blood and lymphatic space invasion (LSI). In this study, the utility of D2-40 was assessed for the detection of lymphatic vessel density (LVD) and identification of LSI. The expressions of vascular endothelial growth factor receptor-3 (VEGFR-3), VEGF-C, tyrosine receptor kinase-2, and angiopoietin-1 were assessed by immunohistochemical methods on 50 patients with squamous cell carcinoma of the cervix. Clinicopathologic characteristics, including pelvic lymph node metastasis, were correlated with the above histochemical findings. We found that lymphangiogenesis, measured by an increase in peritumoral LVD, was significantly associated with positive lymph node status (P < .005). VEGFR-3 expression was significantly associated with LVD (P < .05). D2-40 staining verified LSI (P = .03) and surpassed that of hematoxylin and eosin-identified LVSI (P = .54). In conclusion, lymphangiogenic markers, specifically LVD quantified by D2-40 and VEGFR-3, are independently associated with LSI and lymph node metastasis in patients with early squamous cell carcinoma of the cervix treated with radical hysterectomy and pelvic lymphadenectomy

    Effect of Tumor Necrosis Factor-α on Estrogen Metabolism and Endometrial Cells: Potential Physiological and Pathological Relevance

    No full text
    Context: Estrogen and its metabolites play a critical role in the pathophysiology of the endometrium. The bioavailability of estrogen and estrogen metabolites in endometrial tissues depends on the expression of enzymes involved in estrogen biosynthesis and metabolism. Substantial evidence indicates that estrogen-dependent endometrial disorders are also associated with proinflammatory milieu. However, the mechanism whereby inflammation contributes to these conditions is not known
    corecore