116 research outputs found

    Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling.

    Get PDF
    The tumor microenvironment (TME) exerts critical pro-tumorigenic effects through cytokines and growth factors that support cancer cell proliferation, survival, motility and invasion. Insulin-like growth factor-1 (IGF-1) and signal transducer and activator of transcription 3 (STAT3) stimulate colorectal cancer development and progression via cell autonomous and microenvironmental effects. Using a unique inhibitor, NT157, which targets both IGF-1 receptor (IGF-1R) and STAT3, we show that these pathways regulate many TME functions associated with sporadic colonic tumorigenesis in CPC-APC mice, in which cancer development is driven by loss of the Apc tumor suppressor gene. NT157 causes a substantial reduction in tumor burden by affecting cancer cells, cancer-associated fibroblasts (CAF) and myeloid cells. Decreased cancer cell proliferation and increased apoptosis were accompanied by inhibition of CAF activation and decreased inflammation. Furthermore, NT157 inhibited expression of pro-tumorigenic cytokines, chemokines and growth factors, including IL-6, IL-11 and IL-23 as well as CCL2, CCL5, CXCL7, CXCL5, ICAM1 and TGFβ; decreased cancer cell migratory activity and reduced their proliferation in the liver. NT157 represents a new class of anti-cancer drugs that affect both the malignant cell and its supportive microenvironment

    ROS release by PPARβ/δ-null fibroblasts reduces tumor load through epithelial antioxidant response.

    Get PDF
    Tumor stroma has an active role in the initiation, growth, and propagation of many tumor types by secreting growth factors and modulating redox status of the microenvironment. Although PPARβ/δ in fibroblasts was shown to modulate oxidative stress in the wound microenvironment, there has been no evidence of a similar effect in the tumor stroma. Here, we present evidence of oxidative stress modulation by intestinal stromal PPARβ/δ, using a FSPCre-Pparb/d <sup>-/-</sup> mouse model and validated it with immortalized cell lines. The FSPCre-Pparb/d <sup>-/-</sup> mice developed fewer intestinal polyps and survived longer when compared with Pparb/d <sup>fl/fl</sup> mice. The pre-treatment of FSPCre-Pparb/d <sup>-/-</sup> and Pparb/d <sup>fl/fl</sup> with antioxidant N-acetyl-cysteine prior DSS-induced tumorigenesis resulted in lower tumor load. Gene expression analyses implicated an altered oxidative stress processes. Indeed, the FSPCre-Pparb/d <sup>-/-</sup> intestinal tumors have reduced oxidative stress than Pparb/d <sup>fl/fl</sup> tumors. Similarly, the colorectal cancer cells and human colon epithelial cells also experienced lower oxidative stress when co-cultured with fibroblasts depleted of PPARβ/δ expression. Therefore, our results establish a role for fibroblast PPARβ/δ in epithelial-mesenchymal communication for ROS homeostasis

    Fructose stimulated de novo lipogenesis is promoted by inflammation

    Get PDF
    Benign hepatosteatosis, affected by lipid uptake, de novo lipogenesis and fatty acid (FA) oxidation, progresses to non-alcoholic steatohepatitis (NASH) on stress and inflammation. A key macronutrient proposed to increase hepatosteatosis and NASH risk is fructose. Excessive intake of fructose causes intestinal-barrier deterioration and endotoxaemia. However, how fructose triggers these alterations and their roles in hepatosteatosis and NASH pathogenesis remain unknown. Here we show, using mice, that microbiota-derived Toll-like receptor (TLR) agonists promote hepatosteatosis without affecting fructose-1-phosphate (F1P) and cytosolic acetyl-CoA. Activation of mucosal-regenerative gp130 signalling, administration of the YAP-induced matricellular protein CCN1 or expression of the antimicrobial peptide Reg3b (beta) peptide counteract fructose-induced barrier deterioration, which depends on endoplasmic-reticulum stress and subsequent endotoxaemia. Endotoxin engages TLR4 to trigger TNF production by liver macrophages, thereby inducing lipogenic enzymes that convert F1P and acetyl-CoA to FA in both mouse and human hepatocytes

    Targeting microRNAs as key modulators of tumor immune response

    Full text link

    B cell regulation of the anti-tumor response and role in carcinogenesis

    Full text link
    The balance between immune effector cells such as T cells and natural killer cells, and immunosuppressive Treg cells, dendritic, myeloid and monocytic sub-populations in the tumor microenvironment acts to calibrate the immune response to malignant cells. Accumulating evidence is pointing to a role for B cells in modulating the immune response to both solid tumors and hematologic cancer. Evidence from murine autoimmune models has defined B regulatory cell (Breg) subsets that express cytokines such as IL-10, TGF-β, and/or express immune regulatory ligands such as PD-L1, which can suppress T cell and/or natural killer cell responses. Multiple murine tumor models exhibit decreased tumor growth in B cell deficient or B cell depleted mice. In several of these models, B cells inhibit T cell mediated tumor immunity and/or facilitate conversion of T cells to CD4(+)CD25(+)FoxP3(+) T regs, which act to attenuate the innate and/or adaptive antitumor immune response. Mechanisms of suppression include the acquisition of inhibitory ligand expression, and phosphorylation of Stat3, and induction of IL-10 and TGF-β, resulting in a Breg phenotype. Breg suppressive activity may affect diverse cell subtypes, including T effector cells, NK cells, myeloid derived suppressor cells (MDSC) and/or tumor associated macrophages. B cells may also directly promote tumorigenesis through recruitment of inflammatory cells, and upregulation of pro-angiogenic genes and pro-metastatic collagenases. Breg infiltration has now been identified in a variety of solid tumor malignancies including but not limited to ovarian, gastric, non-small cell lung cancer, pancreatic, esophageal, head and neck, and hepatocellular carcinomas. Increasing evidence suggests that recruitment of B cells and acquisition of suppressive activity within the tumor bed may be an important mechanism through which B cells may modulate innate and/or adaptive anti-tumor immunity. B cell depletion in the clinic using anti-CD20 antibodies and/or inhibitors of BTK and/or other signaling pathways, may be a useful strategy for augmenting the anti-tumor immune response

    Antiproliferative Properties of the Serotonin Receptor Antagonist Ondansetron Correlate with Increased Nitric Oxides Release and Inducible Nitric Oxide Synthase Activity in the Acute Lymphoblastic Leukemia Cell Line REH

    No full text
    A recent report from our group described that the (serotonin receptor-3)-antagonist ondansetron exhibits antiproliferative effects in the B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cell line REH. Furthermore, after each application of ondansetron to cultured REH cells, significant increases (+23%) in the concentration of nitric oxides (NO) were observed in the cell supernatants after 72 hours incubation in standard conditions, and this effect was found to correlate with the described antiproliferative activity. This feature was further confirmed by using mRNA dot blot hybridizations with a specific gene probe for the inducible NO-synthase (iNOS), yielding significant increases (+100%) of iNOS mRNA, which were found to widely correlate with the detected increases of NO release, and also with the previously described antiproliferative effects. The presented results are the first report on high specific pro-inflammatory features of a (serotonin receptor 3)-antagonist in a BCP-ALL cell line, which are associated with previously described antiproliferative properties
    corecore