20 research outputs found

    Windfield: Learning Wind Meteorology with Handheld Haptic Robots

    Get PDF
    This article presents a learning activity and its user study involving the Cellulo platform, a novel versatile robotic tool designed for education. In order to show the potential of Cellulo in the classroom as part of standard curricular activities, we designed a learning activity called Windfield that aims to teach the atmospheric formation mechanism of wind to early middle school children. The activity involves a didactic sequence, introducing the Cellulo robots as hot air balloons and enabling children to feel the wind force through haptic feedback. We present a user study, designed in the form of a real hour-long lesson, conducted with 24 children in 8 groups who had no prior knowledge in the subject. Collaborative metrics within groups and individual performances about the learning of key concepts were measured with only the hardware and software integrated in the platform in a completely automated manner. The results show that almost all participants showed learning of symmetric aspects of wind formation while about half showed learning of asymmetric vectorial aspects that are more complex

    Review on the influence of process parameters in incremental sheet forming

    Get PDF
    Incremental sheet forming (ISF) is a relatively new flexible forming process. ISF has excellent adaptability to conventional milling machines and requires minimum use of complex tooling, dies and forming press, which makes the process cost-effective and easy to automate for various applications. In the past two decades, extensive research on ISF has resulted in significant advances being made in fundamental understanding and development of new processing and tooling solutions. However, ISF has yet to be fully implemented to mainstream high-value manufacturing industries due to a number of technical challenges, all of which are directly related to ISF process parameters. This paper aims to provide a detailed review of the current state-of-the-art of ISF processes in terms of its technological capabilities and specific limitations with discussions on the ISF process parameters and their effects on ISF processes. Particular attention is given to the ISF process parameters on the formability, deformation and failure mechanics, springback and accuracy and surface roughness. This leads to a number of recommendations that are considered essential for future research effort

    Investigation of the effect of forming parameters in incremental sheet forming using a micromechanics based damage model

    Get PDF
    The incremental sheet forming (ISF) process is considered as a feasible solution for forming a variety of small batch and even customised sheet components. The quality of an ISF product is affected by various process parameters, e.g. sheet material, step-down, feed rate, tool diameter and lubricant. To produce an ISF part of sufficient quality and accuracy without defects, optimal parameters of the ISF process should be selected. In the present work, experiments and FE analyses were conducted to evaluate the influence of the main ISF process parameters including the step-down, feed rate and tool diameter on the formability and fracture of two types of pure Ti (grade 1 and 2). The Gurson–Tvergaard-Needleman (GTN) damage constitutive model with consideration of stress triaxiality was developed to predict ductile fracture in the ISF process due to void nucleation, growth and coalescence. It was found that the ISF parameters have varying degrees of effect on the formability and fracture occurrence of the two types of pure Ti, and grade 2 pure Ti sheet is more sensitive than grade 1 Ti sheet to the forming parameters due to low ductility

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Extracting hydroxyapatite and its precursors from natural resources

    No full text
    Healing of segmental bone defects remain a difficult problem in orthopedic and trauma surgery. One reason for this difficulty is the limited availability of bone material to fill the defect and promote bone growth. Hydroxyapatite (HA) is a synthetic biomaterial, which is chemically similar to the mineral component of bones and hard tissues in mammals and, therefore, it can be used as a filler to replace damaged bone or as a coating on implants to promote bone in-growth into prosthetic implants when used in orthopedic, dental, and maxillofacial applications. HA is a stoichiometric material with a chemical composition of Ca10(PO4)6(OH)2, while a mineral component of bone is a non-stoichiometric HA with trace amounts of ions such as Na+, Zn2+, Mg2+, K+, Si2+, Ba2+, F-, CO3 2-, etc. This review looks at the progress being made to extract HA and its precursors containing trace amount of beneficial ions from biological resources like animal bones, eggshells, wood, algae, etc. Properties, such as particle size, morphology, stoichiometry, thermal stability, and the presence of trace ions are studied with respect to the starting material and recovery method used. This review also highlights the importance of extracting HA from natural resources and gives future directions to the researcher so that HA extracted from biological resources can be used clinically as a valuable biomaterial
    corecore