161 research outputs found

    Singularity theory study of overdetermination in models for L-H transitions

    Full text link
    Two dynamical models that have been proposed to describe transitions between low and high confinement states (L-H transitions) in confined plasmas are analysed using singularity theory and stability theory. It is shown that the stationary-state bifurcation sets have qualitative properties identical to standard normal forms for the pitchfork and transcritical bifurcations. The analysis yields the codimension of the highest-order singularities, from which we find that the unperturbed systems are overdetermined bifurcation problems and derive appropriate universal unfoldings. Questions of mutual equivalence and the character of the state transitions are addressed.Comment: Latex (Revtex) source + 13 small postscript figures. Revised versio

    Effects of orbit squeezing on ion transport processes close to magnetic axis

    Get PDF
    It is shown that ion thermal conductivity close to the magnetic axis in tokamaks is reduced by a factor of {vert_bar}S{vert_bar}{sup 5/3} if (M{sub i}/M{sub e}){sup 2/3}(T{sub e}/T{sub i}){sup 4/3}/{vert_bar}S{vert_bar}{sup 5/3} {much_gt} 1. Here, S is the orbit squeezing factor, M{sub i}(M{sub e}) is the ion (electron) mass, and T{sub i}(Te{sub e}) is the ion (electron) temperature. The reduction reflects both the increase of the fraction of trapped particles by a factor of {vert_bar}S{vert_bar}{sup 1/3}, and the decrease of the orbit size in units of the poloidal flux {psi} by a factor of {vert_bar}S{vert_bar}{sup 2/3}
    • …
    corecore