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Bootstrap Current Close to Magnetic Axis 
in Tokamaks 

K.C. Shaing and R.D. Hazeltine 
Institute for Fusion Studies, The University of Texas at Austin 

Austin, Texas 78712 USA 

Abstract 

It is shown that the bootstrap current density close to the magnetic axis in tokamaks 

does not vanish in simple electron-ion plasmas because the fraction of the trapped particles 

is finite. The magnitude of.the current density could be comparable to that in the outer core 

region. This may reduce or even eliminate the need of the seed current. 

PACS Nos.: 52.25.Fi, 52.25.Dg, 52.25.Fa 
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It is well known from conventional neoclassical theory that a steady-state tokamak cannot 

be sustained by the bootstrap current alone without a seed current on the magnetic 

The main reason is that as T ,  the minor radius, approaches zero, the bootstrap current also 

vanishes. A seed current is thus required to maintain the equilibrium safety factor q profile. 

However, because particle orbit topology in the region close to the magnetic axis deviates 

from that employed in the conventional theory, the prediction of the bootstrap current based 

on the conventional theory becomes questionable in that r e g i ~ n . ~ > ~  Indeed, a parallel flow 

close to the magnetic axis for the fusion alpha particles is calculated in Ref. 6 by taking 

into account the proper orbit topology. This parallel alpha flow contributes to the bootstrap 

current on the magnetic axis. It is also argued that because the fraction of the trapped 

ions does not vanish when T t 0, the bootstrap current should be finite there.7 Both of 

thle previous studies did not take force balance into account. Here, we calculate parallel 

plasma viscosities and find from the solution of the parallel balance equations for simple 

electron-ion plasmas that the bootstrap current close to the magnetic axis does not vanish. 

The magnitude of the current density can be comparable to that in the outer core region. 

T:his may reduce or even eliminate the need of the seed current. 

The proper linearized drift kinetic equation iss 

(v,,ii + Vd) Of - C(f) = 2 7 j  :;(; - - - ;$) - fM 

where vll is the parallel (to the magnetic field B) particle speed, vd is the drift velocity, f is 

the perturbed particle distribution function, v is the particle speed, vt is the thermal speed, 

V is the mass flow velocity, q is the heat flow, p is the plasma pressure, B = 1B1, C(f) is 

the Coulomb collision operator, and f~ is the Maxwellian distribution. The independent 

va,riables in Eq. (1) are ( E ,  p, $, 0) where E = v2/2, 1-1 = v:/2B, $ is the poloidal flux 

2 



function, 8 is the poloidal angle, and vl = (v2 - v i ) /2  is the perpendicular (to B) speed. For 

simplicity, we neglect the effects of orbit squeezing here. The basic assumptions for Eq. (1) 

are that the equilibrium gradient scale length is larger than the width of the orbit, inverse 

aspect ratio E < 1, and that all the relevant flow velocities are subsonic (so that the plasma 

is incompressible). 

To solve Eq. (l), we need to know the particle trajectory. The particle trajectory close to 

the magnetic axis is determined by three constants of motion: toroidal canonical momentum 

Pc = I I ,  - 1vli/R, magnetic moment p)  and energy v2/2. Here, 1 = R 2 V c .  B, R is the 

major radius, < is the toroidal angle, and R is the gyrofrequency. For particles that pass the 

magnetic axis, the deviation from the magnetic axis $0 = 0 can be described as 

3 Iv(l0 2I2C1 x + 2 -x - - (vio + pBo) cos8 = 0, 
a0 R2 

where 8 is the poloidal angle, IC = fi, the subscript “0” indicates evaluation at $0 = 0 and 

8 = 60,  and C1 = 2/29/1R. To obtain Eq. ( 2 ) ,  we have used a large aspect ratio expansion, 

i.e., E << 1, and assumed that there is no magnetic shear for simplicity. 

The solution to Eq. ( 2 )  is characterized by the effective pitch angle parameter K = 

( 8 / 2 7 ) ( I l u ~ l o ~ / R 0 ) ” / [ ( 1 ~ C ~ / R ~ ) ~ ( v ~ ~  +  BO)^]. For simplicity) we assume Ro is positive. For 

circulating particles, -cc < CTK < -1, and 0 < CTK < 00, where CT = vlio/lv~loi. For trapped 

particles -1 5 OK 5 0. Trapped particles are defined as particles that have turning points) 

namely) poloidal angles at which poloidal angular speed w = ( q 6  + vd) a V8/(6 - V6) = 0, 

on their trajectories. Note that if 00 is negative, the orbit trajectory is the same as that of 

the positive Ro as long as the sign of CT is also changed simultaneously. 

The real positive solutions to Eq. (2) have the general form 

x = 22T, (3.) 

where 2 = [ ( 1 2 C ~ / R ~ ) ( v i o  + pBO)]1/3(l~~l)1/6, and T is one of the following functions: 
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cos(P/3), sin(n/6 i ,8/3), sinh(P/3), and cosh(P/3). Because orbit trajectories are u p  

down symmetric in poloidal angle 8, we only describe trajectories in the first and the 

second quadrants. There are two classes of circulating particles with -w < a& < -1. 

One class is described by T = cos(p/3) with cos@ = c o s 8 / J l a ~ (  for 0 5 8 5 r/2, and 

T = sin(n/6 + p/3) with cosp  = ( c o s O l / ~  for n/2 5 8 5 r. The other class is 

described by T = sin(n/6 - p / 3 )  with cos@ = IcosSl/\/lorcI for n/2 5 8 <_ r. This 

cl.ass of circulating particles intersect the magnetic axis; thus the poloidal angle span is 

n/2 5 8 5 r. There is only one class of circulating particles with 0 < OK < 00. They 

can be described as T = sinh(@/3) with sinhp = c o s 8 / m  for 0 5 8 < n/2. Note 

this class of circulating particles also intersect the magnetic axis. For trapped particles, 

there exists a critical angle 0, defined by the solution of the equation a& + cos2 19, = 0. 

The turning point is Bt = r - 0,. There are two branches for a trapped particle trajec- 

tory separated by O t .  The inner branch that intersects the magnetic axis is described by 

T = sin(r/6 - p/3) with cos ,8 = I cos t9l/m for n/2 5 8 5 r - 4. The outer branch is de- 

scribed by T = sin(.lr/6+P/3) with cosp = I cos8I/,/Ia~.I for r/2 < 8 < r-&, T = COS(@/3) 

with cos0 = I c o s B I / m  for 8, 5 8 5 r/2, and T = cosh(@/3) with coshp = c o s 8 / m  

for 0 5 8 5 8,. 

Employing the constants of motion and the definition of w, we find 

if E << 1. Note that + = x2 and x is given in Eq. (3). The poloidal angular speed w can be 

written as 

w = G(4T2 + a), ( 5 )  

where 2 = ( 3 n o / 4 1 ) [ ( 1 2 C 1 / R ~ ) ( ~ ~ + ~ B ~ ) ~ ] 2 / 3 .  It is straightforward to show that w = 0 

at 8 = et as expected. 

The fraction of trapped particles ft can be estimated from K N 1 to obtain ft N 
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( I v t c ; / Q ~ ) ~ / ~ ,  by approximating uio + pBO N v2/2 N $/2. 

The trapped particle bounce frequency wb can be found by approximating I O K I  - 1 in ij 

and is wb = ( ~ u ~ ~ , " / Q o ) ~ / ~ ( w t / ~ q )  = v t f t /Rq .  

We are interested in the banana regime where v/(f,") < wb with v the collision frequency. 

The perturbed distribution function f can be expanded as f = fi + f2 + ... with small 

parameter v/(f&+,). The leading order equation is 

where K = V - VB/B. VO and H = q .  VO/B. VO. The next order equation is 

Equation (6) can be solved approximately by neglecting the curvature drift and (3vi/2u2) 

term on the right side of Eq. (6). Both w and v d '  V$J can be expressed in terms of the gradi- 

ents of Pc, namely, w = -(I/n)(dP,/a$)/(aP,/aE) and V&v$ = (I/n)[(ap,/aO)/(dPc/aE)].Fi. 

V 6 .  Because $/u2 y f," << 1, the driving term on the right side of Eq. (6) can be written 

in terms of v d  V$J approximately to become 

where 27 = (2/v,2)(noBo/l)fi~[K+(~~/ut2-5/2)2H/(5p)]. Changing variables from ( E ,  p, $, 0) 

to ( E ,  p, Pi, O), and utilizing Eq. (4) we solve Eq. (8) for fi 

4 Iw  
3 0 0  

f l  = -- - 27 + g(E,  p, Pc), (9) 

where g is the integration constant to be determined from Eq. (7).' The pitch angle scattering 
$ 

operator in Eq. (7) can be simplified by noting that the collision process is dominated by 
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pitch angle scattering across the w M 0 boundary: 

Slubstituting Eqs. (9) and (10) into Eq. (7) ,  annihilating the left side of Eq. (7) by averaging 

over the particle trajectory and employing reflection boundary condition for trapped particles 

and periodic boundary condition for circulating particles, we find 

where C is an integration constant. To obtain Eq. (10) we have employed the relation 

dw M ( 4 / 3 ) [ G 2 / ( 2 ~ w ) ] d ~ .  The average integral $Ad6 in Eq. (11) is defined as $dBA = 

&,' Q6A/T for each class of the circulating particles where T can be either TI = ;TT or T2 = 7r/2 

depending on whether they encircle or pass the magnetic axis, and $ d6A = (s,"' dB]AJ)/T1+ 

(J? d6lAI)/T2 for trapped particles. The constant C is determined by the condition that 

XL a W  vanishes when l a ~ l  t 00 for circulating particles and the even (in w )  part of ag/drc, 

continuous across the circulating/trapping bo~ndary .~  This yields 

where ( I W ~ ) ~  = jd6Iw1, and H = 1 for circulating particles and H = 0 for trapped particles. 

To calculate the parallel plasma viscosity, afi/aw is adequate. 

The parallel plasma viscosity is defined aslo 

where 2'1 = r ,  the viscous tensor, T2 = 8, the heat viscous tensor, C1 = 1, C2 = v2/vt - 5/2, 

M is the mass, and the angular brackets denote both radial average and flux surface average 

as defined in Refs. 8 and 9. With Eq. (6), (B V Tj) can be expressed in terms of collision 

operator 

(B v - T ~ )  = -( 1 d3v M ~ , C ( ~ ~ ) D +  (14) 
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where DT1 = ($ /2 ) /{ f~ [K + (v2/v; - 5/2)(2H/5p)]}. Integrating by parts, and changing 

variables from dp to dw, we find 

(B V + Tj) can be evaluated by employing Eq. (12) in Eq. (15) and is 

1 
(B * V - T3)  = 1.121, 

2H 
U 5P 

x s,” dx x5I3 9 e-”Cj K + (x - 5/2)- 

where Ip = c,So”(d./.’/’((~/l~I)~ - HG/(lwI)e)  = 2.77, a = w/JwI, and u is the self- 

collision frequency. A set of viscous coefficients can be defined 

for j = 1 - 3, ~1 = 1, ~2 = x - 5/2, and ~3 = (x - 5/2)2. The parallel viscosities then become 

(18) 

;/3 ( I ~ , / R ~ )  113 

To calculate the bootstrap current in simple electron-ion plasmas, we solve the parallel 

Note that pj is proportional to the fraction of the trapped particles ft = 

similar to the viscous coefficient in the conventional theory.1° 

force balance equations for electrons and ions 

(B * V * nJ) = ( B F l j ) ,  
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t?Z2 = 4.66& and ti2 = f iN&lzvzt . lo Equation (19) has the same form as that in the 

conventional theory, the bootstrap current has thus the familiar form'' 

except for different viscous coefficients which are given in Eq. (17). The notations in Eq. (20) 

are: J b  is the bootstrap current, 42'7: = f??l+NMep~e, = -!&+N.7lde~3~, 

prime denotes d /d$ ,  P' = pi +pL,  c is the speed of light, e is the ion charge, and electric 

conductivity close to the magnetic axis get f  is 

= &-NMep2e, 

Thus, the electric conductivity is not classical as II, -+ 0. 

Note that for a parabolic profile in T ,  d P / d $ ,  and d T / d $  are finite as $ + 0. Also 

p,j cc ft are also finite as $J + 0. We have thus shown that (J& remains finite as $ --f 0. 

The physical reason is obvious: the fraction of trapped particles does not vanish as $ + 0, 

because of the nature of orbit topology close to the magnetic axis. The magnitude of the 

bootstrap current density in Eq. (20) can be comparable to that of the conventional theory 

in the core region. This may reduce or even eliminate the need of the seed current to sustain 

a steady-state tokamak. 
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