DDE/ER/54346-769 INSTITUTE FOR FUSION STUDIES

Bootstrap Current Close to Magnetic Axis in Tokamaks
K.C. Shaing and R.D. Hazeltine

Institute for Fusion Studies
The University of Texas at Austin
Austin, Texas 78712 USA

THE UNIVERSITY OF TEXAS

AUSTIN

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Bootstrap Current Close to Magnetic Axis in Tokamaks

K.C. Shaing and R.D. Hazeltine
Institute for Fusion Studies, The University of Texas at Austin Austin, Texas 78712 USA

Abstract

It is shown that the bootstrap current density close to the magnetic axis in tokamaks does not vanish in simple electron-ion plasmas because the fraction of the trapped particles is finite. The magnitude of the current density could be comparable to that in the outer core region. This may reduce or even eliminate the need of the seed current.

PACS Nos.: $52.25 . \mathrm{Fi}, 52.25 . \mathrm{Dg}, 52.25 . \mathrm{Fa}$

It is well known from conventional neoclassical theory that a steady-state tokamak cannot be sustained by the bootstrap current alone without a seed current on the magnetic axis. ${ }^{1-3}$ The main reason is that as r, the minor radius, approaches zero, the bootstrap current also vanishes. A seed current is thus required to maintain the equilibrium safety factor q profile. However, because particle orbit topology in the region close to the magnetic axis deviates from that employed in the conventional theory, the prediction of the bootstrap current based on the conventional theory becomes questionable in that region. ${ }^{4,5}$ Indeed, a parallel flow close to the magnetic axis for the fusion alpha particles is calculated in Ref. 6 by taking into account the proper orbit topology. This parallel alpha flow contributes to the bootstrap current on the magnetic axis. It is also argued that because the fraction of the trapped ions does not vanish when $r \rightarrow 0$, the bootstrap current should be finite there. ${ }^{7}$ Both of the previous studies did not take force balance into account. Here, we calculate parallel plasma viscosities and find from the solution of the parallel balance equations for simple electron-ion plasmas that the bootstrap current close to the magnetic axis does not vanish. The magnitude of the current density can be comparable to that in the outer core region. This may reduce or even eliminate the need of the seed current.

The proper linearized drift kinetic equation is ${ }^{8}$

$$
\begin{align*}
& \left(v_{\|} \widehat{n}+\mathbf{v}_{d}\right) \cdot \nabla f-C(f)=2 \frac{v^{2}}{v_{t}^{2}}\left(\frac{1}{2}-\frac{3}{2} \frac{v_{\|}^{2}}{v^{2}}\right) f_{M} \\
& \quad \times\left[\mathbf{V} \cdot \nabla \ell n B+\left(\frac{v^{2}}{v_{t}^{2}}-\frac{5}{2}\right) \frac{2}{5} \frac{\mathbf{q} \cdot \nabla \ell n B}{p}\right] \tag{1}
\end{align*}
$$

where $v_{\|}$is the parallel (to the magnetic field \mathbf{B}) particle speed, \mathbf{v}_{d} is the drift velocity, f is the perturbed particle distribution function, v is the particle speed, v_{t} is the thermal speed, \mathbf{V} is the mass flow velocity, \mathbf{q} is the heat flow, p is the plasma pressure, $B=|\mathbf{B}|, C(f)$ is the Coulomb collision operator, and f_{M} is the Maxwellian distribution. The independent variables in Eq. (1) are (E, μ, ψ, θ) where $E=v^{2} / 2, \mu=v_{\perp}^{2} / 2 B, \psi$ is the poloidal flux
function, θ is the poloidal angle, and $v_{\perp}^{2}=\left(v^{2}-v_{\|}^{2}\right) / 2$ is the perpendicular (to \mathbf{B}) speed. For simplicity, we neglect the effects of orbit squeezing here. The basic assumptions for Eq. (1) are that the equilibrium gradient scale length is larger than the width of the orbit, inverse aspect ratio $\epsilon<1$, and that all the relevant flow velocities are subsonic (so that the plasma is incompressible).

To solve Eq. (1), we need to know the particle trajectory. The particle trajectory close to the magnetic axis is determined by three constants of motion: toroidal canonical momentum $P_{\zeta}=\psi-I v_{\|} / \Omega$, magnetic moment μ, and energy $v^{2} / 2$. Here, $I=R^{2} \nabla \zeta \cdot \mathbf{B}, R$ is the major radius, ζ is the toroidal angle, and Ω is the gyrofrequency. For particles that pass the magnetic axis, the deviation from the magnetic axis $\psi_{0}=0$ can be described as

$$
\begin{equation*}
x^{3}+2 \frac{I v_{\| 0}}{\Omega_{0}} x-\frac{2 I^{2} C_{1}}{\Omega^{2}}\left(v_{\| 0}^{2}+\mu B_{0}\right) \cos \theta=0 \tag{2}
\end{equation*}
$$

where θ is the poloidal angle, $x=\sqrt{\psi}$, the subscript " 0 " indicates evaluation at $\psi_{0}=0$ and $\theta=\theta_{0}$, and $C_{1}=\sqrt{2 q / I R}$. To obtain Eq. (2), we have used a large aspect ratio expansion, i.e., $\epsilon \ll 1$, and assumed that there is no magnetic shear for simplicity.

The solution to Eq. (2) is characterized by the effective pitch angle parameter $\kappa=$ $(8 / 27)\left(I\left|v_{\| 0}\right| / \Omega_{0}\right)^{3} /\left[\left(I^{2} C_{1} / \Omega_{0}^{2}\right)^{2}\left(v_{\| 0}^{2}+\mu B_{0}\right)^{2}\right]$. For simplicity, we assume Ω_{0} is positive. For circulating particles, $-\infty<\sigma \kappa<-1$, and $0<\sigma \kappa<\infty$, where $\sigma=v_{\| 0} /\left|v_{\| 0}\right|$. For trapped particles $-1 \leq \sigma \kappa \leq 0$. Trapped particles are defined as particles that have turning points, namely, poloidal angles at which poloidal angular speed $\omega=\left(v_{\|} \widehat{n}+\mathbf{v}_{d}\right) \cdot \nabla \theta /(\widehat{n} \cdot \nabla \theta)=0$, on their trajectories. Note that if Ω_{0} is negative, the orbit trajectory is the same as that of the positive Ω_{0} as long as the sign of σ is also changed simultaneously.

The real positive solutions to Eq. (2) have the general form

$$
\begin{equation*}
x=2 \widehat{x} T \tag{3.}
\end{equation*}
$$

where $\widehat{x}=\left[\left(I^{2} C_{1} / \Omega_{0}^{2}\right)\left(v_{\| 0}^{2}+\mu B_{0}\right)\right]^{1 / 3}(|\sigma \kappa|)^{1 / 6}$, and T is one of the following functions:
$\cos (\beta / 3), \sin (\pi / 6 \pm \beta / 3), \sinh (\beta / 3)$, and $\cosh (\beta / 3)$. Because orbit trajectories are updown symmetric in poloidal angle θ, we only describe trajectories in the first and the second quadrants. There are two classes of circulating particles with $-\infty<\sigma \kappa<-1$. One class is described by $T=\cos (\beta / 3)$ with $\cos \beta=\cos \theta / \sqrt{|\sigma \kappa|}$ for $0 \leq \theta \leq \pi / 2$, and $T=\sin (\pi / 6+\beta / 3)$ with $\cos \beta=|\cos \theta| / \sqrt{|\sigma \kappa|}$ for $\pi / 2 \leq \theta \leq \pi$. The other class is described by $T=\sin (\pi / 6-\beta / 3)$ with $\cos \beta=|\cos \theta| / \sqrt{|\sigma \kappa|}$ for $\pi / 2 \leq \theta \leq \pi$. This class of circulating particles intersect the magnetic axis; thus the poloidal angle span is $\pi / 2 \leq \theta \leq \pi$. There is only one class of circulating particles with $0<\sigma \kappa<\infty$. They can be described as $T=\sinh (\beta / 3)$ with $\sinh \beta=\cos \theta / \sqrt{|\sigma \kappa|}$ for $0 \leq \theta \leq \pi / 2$. Note this class of circulating particles also intersect the magnetic axis. For trapped particles, there exists a critical angle θ_{c} defined by the solution of the equation $\sigma \kappa+\cos ^{2} \theta_{c}=0$. The turning point is $\theta_{t}=\pi-\theta_{c}$. There are two branches for a trapped particle trajectory separated by θ_{t}. The inner branch that intersects the magnetic axis is described by $T=\sin (\pi / 6-\beta / 3)$ with $\cos \beta=|\cos \theta| / \sqrt{|\sigma \kappa|}$ for $\pi / 2 \leq \theta \leq \pi-\theta_{t}$. The outer branch is described by $T=\sin (\pi / 6+\beta / 3)$ with $\cos \beta=|\cos \theta| / \sqrt{|\sigma \kappa|}$ for $\pi / 2 \leq \theta \leq \pi-\theta_{t}, T=\cos (\beta / 3)$ with $\cos \beta=|\cos \theta| / \sqrt{|\sigma \kappa|}$ for $\theta_{c} \leq \theta \leq \pi / 2$, and $T=\cosh (\beta / 3)$ with $\cosh \beta=\cos \theta / \sqrt{|\sigma \kappa|}$ for $0 \leq \theta \leq \theta_{c}$.

Employing the constants of motion and the definition of ω, we find

$$
\begin{equation*}
\omega=\frac{3}{4} \frac{\Omega_{0}}{I}\left(\psi+\frac{2}{3} \frac{I v_{\| 0}}{\Omega_{0}}\right) \tag{4}
\end{equation*}
$$

if $\epsilon \ll 1$. Note that $\psi=x^{2}$ and x is given in Eq. (3). The poloidal angular speed ω can be written as

$$
\begin{equation*}
\omega=\widehat{\omega}\left(4 T^{2}+\sigma\right) \tag{5}
\end{equation*}
$$

where $\widehat{\omega}=\left(3 \Omega_{0} / 4 I\right)\left[\left(I^{2} C_{1} / \Omega_{0}^{2}\right)\left(v_{\|}^{2}+\mu B_{0}\right) \sqrt{|\sigma \kappa|}\right]^{2 / 3}$. It is straightforward to show that $\omega=0$ at $\theta=\theta_{t}$ as expected.

The fraction of trapped particles f_{t} can be estimated from $\kappa \simeq 1$ to obtain $f_{t} \simeq$
$\left(I v_{t} C_{1}^{2} / \Omega_{0}\right)^{1 / 3}$, by approximating $v_{\| 0}^{2}+\mu B_{0} \simeq v^{2} / 2 \simeq v_{t}^{2} / 2$.
The trapped particle bounce frequency ω_{b} can be found by approximating $|\sigma \kappa| \sim 1$ in $\widehat{\omega}$ and is $\omega_{b} \approx\left(I v_{t} C_{1}^{2} / \Omega_{0}\right)^{1 / 3}\left(v_{t} / R q\right)=v_{t} f_{t} / R q$.

We are interested in the banana regime where $\nu /\left(f_{t}^{2}\right)<\omega_{b}$ with ν the collision frequency. The perturbed distribution function f can be expanded as $f=f_{1}+f_{2}+\ldots$ with small parameter $\nu /\left(f_{t}^{2} \omega_{b}\right)$. The leading order equation is

$$
\begin{align*}
\left(v_{\|} \widehat{n}+\mathbf{v}_{d}\right) \cdot & \nabla f_{1}=2 \frac{v^{2}}{v_{t}^{2}}\left(\frac{1}{2}-\frac{3}{2} \frac{v_{\|}^{2}}{v^{2}}\right) f_{M}(\widehat{n} \cdot \nabla \theta) \frac{\partial B}{\partial \theta} \\
& \times\left[K+\left(\frac{v^{2}}{v_{t}^{2}}-\frac{5}{2}\right) \frac{2 H}{5 p}\right] \tag{6}
\end{align*}
$$

where $K=\mathbf{V} \cdot \boldsymbol{\nabla} \theta / \mathbf{B} \cdot \nabla \theta$ and $H=\mathbf{q} \cdot \boldsymbol{\nabla} \theta / \mathbf{B} \cdot \boldsymbol{\nabla} \theta$. The next order equation is

$$
\begin{equation*}
\left(v_{\|} \widehat{n}+\mathbf{v}_{d}\right) \cdot \nabla f_{2}=C\left(f_{1}\right) \tag{7}
\end{equation*}
$$

Equation (6) can be solved approximately by neglecting the curvature drift and ($3 v_{\|}^{2} / 2 v^{2}$) term on the right side of Eq. (6). Both ω and $\mathbf{v}_{d} \cdot \nabla \psi$ can be expressed in terms of the gradients of P_{ζ}, namely, $\omega=-(I / \Omega)\left(\partial P_{\zeta} / \partial \psi\right) /\left(\partial P_{\zeta} / \partial E\right)$ and $\mathbf{v}_{d} \cdot \nabla \psi=(I / \Omega)\left[\left(\partial P_{\zeta} / \partial \theta\right) /\left(\partial P_{\zeta} / \partial E\right)\right] \widehat{n}$. $\nabla \theta$. Because $v_{\|}^{2} / v^{2} \sim f_{t}^{2} \ll 1$, the driving term on the right side of Eq. (6) can be written in terms of $\mathbf{v}_{d} \cdot \boldsymbol{\nabla} \psi$ approximately to become

$$
\begin{equation*}
\left(v_{\|} \widehat{n}+\mathbf{v}_{d}\right) \cdot \nabla f_{1}=-\frac{I}{\Omega} \frac{\partial P_{\zeta} / \partial \theta}{\partial P_{\zeta} / \partial t} \widehat{n} \cdot \nabla \theta \cdot \mathcal{D} \tag{8}
\end{equation*}
$$

where $\mathcal{D}=\left(2 / v_{t}^{2}\right)\left(\Omega_{0} B_{0} / I\right) f_{M}\left[K+\left(v^{2} / v_{t}^{2}-5 / 2\right) 2 H /(5 p)\right]$. Changing variables from (E, μ, ψ, θ) to ($E, \mu, P_{\zeta}, \theta$), and utilizing Eq. (4) we solve Eq. (8) for f_{1}

$$
\begin{equation*}
f_{1}=-\frac{4}{3} \frac{I \omega}{\Omega_{0}} \mathcal{D}+g\left(E, \mu, P_{\zeta}\right) \tag{9}
\end{equation*}
$$

where g is the integration constant to be determined from Eq. (7). ${ }^{9}$ The pitch angle scattering operator in Eq. (7) can be simplified by noting that the collision process is dominated by
pitch angle scattering across the $\omega \approx 0$ boundary:

$$
\begin{equation*}
C\left(f_{1}\right) \approx \nu_{D} E \frac{\partial^{2} f_{1}}{\partial \omega^{2}} \tag{10}
\end{equation*}
$$

Substituting Eqs. (9) and (10) into Eq. (7), annihilating the left side of Eq. (7) by averaging over the particle trajectory and employing reflection boundary condition for trapped particles and periodic boundary condition for circulating particles, we find

$$
\begin{equation*}
\frac{\partial g}{\partial \kappa}=\frac{C}{\frac{\kappa}{\omega^{2}} \oint \frac{d \theta}{\bar{n} \cdot \nabla_{\theta}} \omega} . \tag{11}
\end{equation*}
$$

where C is an integration constant. To obtain Eq. (10) we have employed the relation $d \omega \approx(4 / 3)\left[\hat{\omega}^{2} /(2 \kappa \omega)\right] d \kappa$. The average integral $\oint A d \theta$ in Eq. (11) is defined as $\oint d \theta A=$ $\int_{0}^{T} d \theta A / T$ for each class of the circulating particles where T can be either $T_{1}=\pi$ or $T_{2}=\pi / 2$ depending on whether they encircle or pass the magnetic axis, and $\oint d \theta A=\left(\int_{0}^{\theta_{t}} d \theta|A|\right) / T_{1}+$ $\left(\int_{0}^{\theta_{t}} d \theta|A|\right) / T_{2}$ for trapped particles. The constant C is determined by the condition that $\frac{\partial f_{1}}{\partial \omega}$ vanishes when $|\sigma \kappa| \rightarrow \infty$ for circulating particles and the even (in ω) part of $\partial g / \partial \kappa$ continuous across the circulating/trapping boundary. ${ }^{9}$ This yields

$$
\begin{equation*}
\frac{\partial f_{1}}{\partial \omega}=-\frac{4}{3} \frac{I}{\Omega_{0}} \mathcal{D}\left(1-\frac{|\omega|}{\langle | \omega| \rangle_{\theta}} H\right) . \tag{12}
\end{equation*}
$$

where $\langle | \omega\left\rangle_{\theta}=\oint d \theta\right| \omega \mid$, and $H=1$ for circulating particles and $H=0$ for trapped particles. To calculate the parallel plasma viscosity, $\partial f_{1} / \partial \omega$ is adequate.

The parallel plasma viscosity is defined as ${ }^{10}$

$$
\begin{equation*}
\left\langle\mathbf{B} \cdot \nabla \cdot \boldsymbol{T}_{j}\right\rangle=\left\langle\int d^{3} v M v^{2} \Sigma_{j}\left(\frac{1}{2}-\frac{3}{2} \frac{v_{\|}^{2}}{v^{2}}\right) f \hat{n} \cdot \nabla \theta \frac{\partial B}{\partial \theta}\right\rangle \tag{13}
\end{equation*}
$$

where $\boldsymbol{T}_{1}=\pi$, the viscous tensor, $\boldsymbol{T}_{2}=\boldsymbol{\theta}$, the heat viscous tensor, $\Sigma_{1}=1, \Sigma_{2}=v^{2} / v_{t}^{2}-5 / 2$, M is the mass, and the angular brackets denote both radial average and flux surface average as defined in Refs. 8 and 9. With Eq. (6), $\left\langle\mathbf{B} \cdot \boldsymbol{\nabla} \cdot \boldsymbol{T}_{j}\right\rangle$ can be expressed in terms of collision operator

$$
\begin{equation*}
\left\langle\mathbf{B} \cdot \boldsymbol{\nabla} \cdot \boldsymbol{T}_{j}\right\rangle=-\left\langle\int d^{3} v M f_{1} C\left(f_{1}\right) \mathcal{D}_{1}^{-1}\right\rangle, \tag{14}
\end{equation*}
$$

where $\mathcal{D}_{1}^{-1}=\left(v_{t}^{2} / 2\right) /\left\{f_{M}\left[K+\left(v^{2} / v_{t}^{2}-5 / 2\right)(2 H / 5 p)\right]\right\}$. Integrating by parts, and changing variables from $d \mu$ to $d \omega$, we find

$$
\begin{equation*}
\left\langle\mathbf{B} \cdot \boldsymbol{\nabla} \cdot \boldsymbol{T}_{j}\right\rangle \simeq\left\langle\int d^{3} v M \mathcal{D}_{1}^{-1} \nu_{E} E\left(\frac{\partial f_{1}}{\partial \omega}\right)^{2}\right\rangle \tag{15}
\end{equation*}
$$

$\left\langle\mathbf{B} \cdot \boldsymbol{\nabla} \cdot \boldsymbol{T}_{j}\right\rangle$ can be evaluated by employing Eq. (12) in Eq. (15) and is

$$
\begin{align*}
& \left\langle\mathbf{B} \cdot \nabla \cdot \boldsymbol{T}_{j}\right\rangle=1.12 I_{p} \frac{N M B_{0}^{2}}{\sqrt{\pi}} \nu C_{1}^{2 / 3}\left(\frac{I v_{t}}{\Omega_{0}}\right)^{1 / 3} \\
& \times \int_{0}^{\infty} d x x^{5 / 3} \frac{\nu_{D}}{\nu} e^{-x} \Sigma_{j}\left[K+(x-5 / 2) \frac{2 H}{5 p}\right] \tag{16}
\end{align*}
$$

where $I_{p}=\Sigma_{\alpha} \int_{0}^{\infty}\left(d \kappa / \kappa^{2 / 3}\left(\langle\hat{\omega} /| \omega| \rangle_{\theta}-H \hat{\omega} /\langle | \omega| \rangle_{\theta}\right)=2.77, \alpha=\omega /|\omega|\right.$, and ν is the selfcollision frequency. A set of viscous coefficients can be defined

$$
\begin{equation*}
\mu_{j}=1.12 I_{p} \frac{\nu}{\sqrt{\pi}}\left(\frac{I v_{t}}{\Omega_{0}}\right)^{1 / 3} C_{1}^{2 / 3} \int_{0}^{\infty} d x x^{5 / 3} \sigma_{j} \frac{\nu_{D}}{\nu} e^{-x} \tag{17}
\end{equation*}
$$

for $j=1-3, \sigma_{1}=1, \sigma_{2}=x-5 / 2$, and $\sigma_{3}=(x-5 / 2)^{2}$. The parallel viscosities then become

$$
\binom{\langle\mathbf{B} \cdot \boldsymbol{\nabla} \cdot \boldsymbol{\pi}\rangle}{\langle\mathbf{B} \cdot \boldsymbol{\nabla} \cdot \boldsymbol{\Theta}\rangle}=N M B_{0}^{2}\left(\begin{array}{cc}
\mu_{1} & \mu_{2} \tag{18}\\
\mu_{2} & \mu_{3}
\end{array}\right)\binom{K}{\frac{2 H}{5 p}}
$$

Note that μ_{j} is proportional to the fraction of the trapped particles $f_{t}=C_{1}^{2 / 3}\left(I v_{t} / \Omega_{0}\right)^{1 / 3}$ similar to the viscous coefficient in the conventional theory. ${ }^{10}$

To calculate the bootstrap current in simple electron-ion plasmas, we solve the parallel force balance equations for electrons and ions

$$
\begin{align*}
& \left\langle\mathbf{B} \cdot \boldsymbol{\nabla} \cdot \boldsymbol{\pi}_{j}\right\rangle=\left\langle B F_{1 j}\right\rangle, \\
& \left\langle\mathbf{B} \cdot \boldsymbol{\nabla} \cdot \Theta_{j}\right\rangle=\left\langle B F_{2 j}\right\rangle, \tag{19}
\end{align*}
$$

where $j=1$ for ions and $j=e$ for electrons. $F_{1 e}=-F_{1 i}=\ell_{11}^{e}\left(V_{i \|}-V_{e \|}\right)+(2 / 5) \ell_{12}^{e}\left(q_{e \|} / p_{e}\right)$, $F_{2 e}=-\ell_{12}^{e}\left(V_{i \|}-V_{e \|}\right)-(2 / 5) \ell_{22}^{e}\left(q_{e \|} / p_{e}\right), F_{2 i}=-(2 / 5) \ell_{22}^{i}\left(q_{i \|} / p_{i}\right), \ell_{11}^{e}=N_{e} M_{e} \nu_{e e}, \ell_{12}^{e}=1.5 \ell_{11}^{e}$,
$\ell_{22}^{e}=4.66 \ell_{11}^{e}$ and $\ell_{12}^{i}=\sqrt{2} N_{i} M_{i} \nu_{i i} \cdot{ }^{10}$ Equation (19) has the same form as that in the conventional theory, the bootstrap current has thus the familiar form ${ }^{10}$

$$
\begin{align*}
\left\langle J_{b} B\right\rangle & =-\sigma_{\mathrm{eff}}\left(\frac{M_{e} \mu_{1 e}}{N e^{2}}\right) I c\left[\left(1+\frac{\mu_{2 e}}{\mu_{1 e}} \frac{\ell_{12}^{e b}}{\ell_{22}^{e b}}\right) P^{\prime}\right. \\
& \left.+\left(1+\frac{\mu_{2 e}}{\mu_{1 e}} \frac{\ell_{12}^{e b}}{\ell_{22}^{e b}}\right) \frac{\mu_{2 i}}{\mu_{1 i}} N T_{i}^{\prime}+\frac{\mu_{2 e}}{\mu_{1 e}}\left(1+\frac{\mu_{3 e}}{\mu_{2 e}} \frac{\ell_{12}^{e b}}{\ell_{22}^{e b}}\right) N T_{e}^{\prime}\right] \tag{20}
\end{align*}
$$

except for different viscous coefficients which are given in Eq. (17). The notations in Eq. (20) are: J_{b} is the bootstrap current, $\ell_{11}^{e b}=\ell_{11}^{e}+N M_{e} \mu_{1 e}, \ell_{12}^{e b}=\ell_{12}^{e}-N M_{e} \mu_{2 e}, \ell_{22}^{e b}=\ell_{22}^{e}+N M_{e} \mu_{3 e}$, prime denotes $d / d \psi, P^{\prime}=p_{i}^{\prime}+p_{e}^{\prime}, c$ is the speed of light, e is the ion charge, and electric conductivity close to the magnetic axis $\sigma_{\text {eff }}$ is

$$
\begin{equation*}
\sigma_{\mathrm{eff}}=(N e)^{2} \frac{\ell_{22}^{e b}}{\ell_{11}^{e b} \ell_{22}^{e^{b}}-\left(\ell_{12}^{e b}\right)^{2}} \tag{21}
\end{equation*}
$$

Thus, the electric conductivity is not classical as $\psi \rightarrow 0$.
Note that for a parabolic profile in $r, d P / d \psi$, and $d T / d \psi$ are finite as $\psi \rightarrow 0$. Also $\mu_{j} \propto f_{t}$ are also finite as $\psi \rightarrow 0$. We have thus shown that $\left\langle J_{b} B\right\rangle$ remains finite as $\psi \rightarrow 0$. The physical reason is obvious: the fraction of trapped particles does not vanish as $\psi \rightarrow 0$, because of the nature of orbit topology close to the magnetic axis. The magnitude of the bootstrap current density in Eq. (20) can be comparable to that of the conventional theory in the core region. This may reduce or even eliminate the need of the seed current to sustain a steady-state tokamak.

Acknowledgments

This work was supported by the U.S. Dept. of Energy Contract No. DE-FG03-96ER54346.

REFERENCES

${ }^{1}$ R.J. Bickerton, J.W. Connor, and J.B. Taylor, Nat. Phys. Sci. 229, 110 (1971).
${ }^{2}$ A.A. Galeev and R.Z. Sagdeev, JETP. Lett. 13, 113 (1971).
${ }^{3}$ F.L. Hinton and R.D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976).
${ }^{4}$ T.H. Stix, Plasma Phys. 14, 367 (1972).
${ }^{5}$ T.E. Stringer, Plasma Phys. 16, 651 (1974).
${ }^{6}$ V. Ya Goloborod'ko, Ya.I. Kolesnichenko, and V.A. Yaborskij, Nucl. Fusion 23, 399 (1982).
${ }^{7}$ P.A. Politzer, Bull. Am. Phys. Soc. 40, 1787 (1995).
${ }^{8}$ K.C. Shaing, C.T. Hsu, and N. Dominguez, Phys. Plasmas 1, 1168 (1994).
${ }^{9}$ R.D. Hazeltine and P.J. Catto, Phys. Fluids 24, 290 (1981).
${ }^{10}$ S.P. Hirshman and D.J. Sigmar, Nucl. Fusion 21, 1079 (1981).

