36 research outputs found

    Droplet digital PCR quantifies host inflammatory transcripts in feces reliably and reproducibly

    Get PDF
    AbstractThe gut is the most extensive, interactive, and complex interface between the human host and the environment and therefore a critical site of immunological activity. Non-invasive methods to assess the host response in this organ are currently lacking. Feces are the available analyte which have been in proximity to the gut tissue.We applied a method of concentrating host transcripts from fecal specimens using a existing bead-based affinity separation method for nucleic acids and quantified transcripts using droplet digital PCR (ddPCR) to determine the copy numbers of a variety of key transcripts in the gut immune system. ddPCR compartmentalizes the reaction in a small aqueous droplet suspended in oil, and counts droplets as either fluorescent or non-fluorescent. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used to normalize transcript concentration.This method was applied to 799 fecal samples from rural Malawian children, and over 20,000 transcript concentrations were quantified. Host mRNA was detected in >99% samples, a threshold for target detection was established at an average expression of 0.02 copies target/GAPDH, above which correlation coefficient between duplicate measurements is >0.95. Quantities of transcript detected using ddPCR were greater than standard qPCR. Fecal sample preservation at the time of collection did not require immediate freezing or the addition of buffers or enzymes. Measurements of transcripts encoding immunoactive proteins correlated with a measure of gut inflammation in the study children, thereby substantiating their relevance. This method allows investigators to interrogate gene expression in the gut

    Measurement of gut permeability using fluorescent tracer agent technology

    Get PDF
    Abstract The healthy gut restricts macromolecular and bacterial movement across tight junctions, while increased intestinal permeability accompanies many intestinal disorders. Dual sugar absorption tests, which measure intestinal permeability in humans, present challenges. Therefore, we asked if enterally administered fluorescent tracers could ascertain mucosal integrity, because transcutaneous measurement of differentially absorbed molecules could enable specimen-free evaluation of permeability. We induced small bowel injury in rats using high- (15 mg/kg), intermediate- (10 mg/kg), and low- (5 mg/kg) dose indomethacin. Then, we compared urinary ratios of enterally administered fluorescent tracers MB-402 and MB-301 to urinary ratios of sugar tracers lactulose and rhamnose. We also tested the ability of transcutaneous sensors to measure the ratios of absorbed fluorophores. Urinary fluorophore and sugar ratios reflect gut injury in an indomethacin dose dependent manner. The fluorophores generated smooth curvilinear ratio trajectories with wide dynamic ranges. The more chaotic sugar ratios had narrower dynamic ranges. Fluorophore ratios measured through the skin distinguished indomethacin-challenged from same day control rats. Enterally administered fluorophores can identify intestinal injury in a rat model. Fluorophore ratios are measureable through the skin, obviating drawbacks of dual sugar absorption tests. Pending validation, this technology should be considered for human use

    Environmental enteric dysfunction includes a broad spectrum of inflammatory responses and epithelial repair processes

    Get PDF
    Background & AimsEnvironmental enteric dysfunction (EED), a chronic diffuse inflammation of the small intestine, is associated with stunting in children in the developing world. The pathobiology of EED is poorly understood because of the lack of a method to elucidate the host response. This study tested a novel microarray method to overcome limitation of RNA sequencing to interrogate the host transcriptome in feces in Malawian children with EED.MethodsIn 259 children, EED was measured by lactulose permeability (%L). After isolating low copy numbers of host messenger RNA, the transcriptome was reliably and reproducibly profiled, validated by polymerase chain reaction. Messenger RNA copy number then was correlated with %L and differential expression in EED. The transcripts identified were mapped to biological pathways and processes. The children studied had a range of %L values, consistent with a spectrum of EED from none to severe.ResultsWe identified 12 transcripts associated with the severity of EED, including chemokines that stimulate T-cell proliferation, Fc fragments of multiple immunoglobulin families, interferon-induced proteins, activators of neutrophils and B cells, and mediators that dampen cellular responses to hormones. EED-associated transcripts mapped to pathways related to cell adhesion, and responses to a broad spectrum of viral, bacterial, and parasitic microbes. Several mucins, regulatory factors, and protein kinases associated with the maintenance of the mucous layer were expressed less in children with EED than in normal children.ConclusionsEED represents the activation of diverse elements of the immune system and is associated with widespread intestinal barrier disruption. Differentially expressed transcripts, appropriately enumerated, should be explored as potential biomarkers

    Transdermal fluorescence detection of a dual fluorophore system for noninvasive point-of-care gastrointestinal permeability measurement

    Get PDF
    The intestinal mucosal barrier prevents macromolecules and pathogens from entering the circulatory stream. Tight junctions in this barrier are compromised in inflammatory bowel diseases, environmental enteropathy, and enteric dysfunction. Dual sugar absorption tests are a standard method for measuring gastrointestinal integrity, however, these are not clinically amenable. Herein, we report on a dual fluorophore system and fluorescence detection instrumentation for which gastrointestinal permeability is determined in a rat small bowel disease model from the longitudinal measured transdermal fluorescence of each fluorophore. This fluorophore technology enables a specimen-free, noninvasive, point-of-care gastrointestinal permeability measurement which should be translatable to human clinical studies

    Rhamnose is superior to mannitol as a monosaccharide in the dual sugar absorption test: A prospective randomized study in children with treatment-naïve celiac disease

    Get PDF
    BACKGROUND AND AIM: We sought to correlate two different measures of gut permeability [lactulose:mannitol (L:M) and lactulose:rhamnose (L:R)] to the severity of duodenal histopathology in children with and without elevated antibodies to tissue transglutaminase (tTG). A secondary objective was to correlate gut permeability with celiac disease (CD) serology and indices of inflammation and bacterial product translocation. METHODS: We prospectively randomized children undergoing endoscopy with abnormal ( RESULTS: Of the 54 cases with positive celiac serology, 31 and 69% had modified Marsh 0/1 scores or ≥3a, respectively. Circulating tTG IgA correlated with the modified Marsh score ( CONCLUSIONS: L:R, but not L:M, is associated with modified Marsh scores in children undergoing small bowel biopsy for suspected CD. Despite increased intestinal permeability, we see scant evidence of systemic exposure to gut microbes in these children. Gut permeability testing with L:R may predict which patients with abnormal celiac serology will have biopsy evidence for celiac disease and reduce the proportion of such patients undergoing endoscopy whose Marsh scores are ≤1. M should not be used as a monosaccharide for permeability testing in children

    Precise dissection of an Escherichia coli O157:H7 outbreak by single nucleotide polymorphism analysis

    Get PDF
    The current pathogen-typing methods have suboptimal sensitivities and specificities. DNA sequencing offers an opportunity to type pathogens with greater degrees of discrimination using single nucleotide polymorphisms (SNPs) than with pulsed-field gel electrophoresis (PFGE) and other methodologies. In a recent cluster of Escherichia coli O157:H7 infections attributed to salad bar exposures and romaine lettuce, a subset of cases denied exposure to either source, although PFGE and multiple-locus variable-number tandem-repeat analysis (MLVA) suggested that all isolates had the same recent progenitor. Interrogation of a preselected set of 3,442,673 nucleotides in backbone open reading frames (ORFs) identified only 1 or 2 single nucleotide differences in 3 of 12 isolates from the cases who denied exposure. The backbone DNAs of 9 of 9 and 3 of 3 cases who reported or were unsure about exposure, respectively, were isogenic. Backbone ORF SNP set sequencing offers pathogen differentiation capabilities that exceed those of PFGE and MLVA

    Greater Diversity of Shiga Toxin-Encoding Bacteriophage Insertion Sites among \u3ci\u3eEscherichia coli\u3c/i\u3e O157:H7 Isolates from Cattle than in Those from Humans

    Get PDF
    E. coli O157:H7, a zoonotic human pathogen for which domestic cattle are a reservoir host, produces a Shiga toxin(s) (Stx) encoded by bacteriophages. Chromosomal insertion sites of these bacteriophages define three principal genotypes (clusters 1 to 3) among clinical isolates of E. coliO157:H7. Stx-encoding bacteriophage insertion site genotypes of 282 clinical and 80 bovine isolates were evaluated. A total of 268 (95.0%) of the clinical isolates, but only 41 (51.3%) of the bovine isolates, belonged to cluster 1, 2, or 3 (P \u3c 0.001). Thirteen additional genotypes were identified in isolates from both cattle and humans (four genotypes), from only cattle (seven genotypes), or from only humans (two genotypes). Two other markers previously associated with isolates from cattle or with clinical isolates showed similar associations with genotype groups within bovine isolates; the tir allele sp-1 and the Q933W allele were under- and overrepresented, respectively, among cluster 1 to 3 genotypes. Stx-encoding bacteriophage insertion site typing demonstrated that there is broad genetic diversity of E. coli O157:H7 in the bovine reservoir and that numerous genotypes are significantly underrepresented among clinical isolates, consistent with the possibility that there is reduced virulence or transmissibility to humans of some bovine E. coli O157:H7 genotypes
    corecore