8 research outputs found

    Normative Approaches to Ethnic Recognition and Accommodation: Their Applicability to the Nigerian Experience

    Get PDF
    This article explores the central theme in the normative philosophy arguments of Michael Walzer; Charles Taylor; and Will Kymlicka and their applicability to the state building processes and constitutional politics in Nigeria. The main argument of these scholars is that, in a multicultural society, equality and justice; unity and stability are likely to prevail if state building and constitutional processes of a country recognises and accommodates ethnic diversity. Critically applied, the article observes that since liberal democratic values are not well rooted in the Nigerian body politics, the specificity of the Nigerian state would have to be recognised for the normative arguments to be completely applicable. Under the given, the article concludes that, strict application of the normative prescriptions in Nigeria’s multiethnic society could trigger escalating cycles of ethno-political tensions, institutional instabilities, and demand by groups for exit from the Nigerian state.Key words: Ethnic accommodation; Ethnic diversity; Ethnic recognition; National unity; Nigerian experience; Normative approaches; Political stabilit

    Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria.

    Get PDF
    Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the SARS-CoV-2 B.1.1.318 and B.1.525 (Eta) variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave in Nigeria emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Data from this study show how regional connectivity of Nigeria drove the spread of these variants of interest to surrounding countries and those connected by air-traffic. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission, as bidirectional transmission within and between African nations are grossly underestimated as seen in our import risk index estimates

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Low level SARS-CoV-2 RNA detected in plasma samples from a cohort of Nigerians: Implications for blood transfusion.

    No full text
    The present global pandemic triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has lingered for over a year in its devastating effects. Diagnosis of coronavirus disease 2019 (COVID-19) is currently established with a polymerase chain reaction (PCR) test by means of oropharyngeal-, nasopharyngeal-, anal-swabs, sputum and blood plasma. However, oral and nasal swabs are more commonly used. This study, therefore, assessed sensitivity and specificity of plasma as a diagnostic in comparison with a combination of oral and nasal swab samples, and the implications for blood transfusion. Oropharyngeal (OP) and nasopharyngeal (NP) swab samples were obtained from 125 individuals suspected to have COVID-19 and stored in viral transport medium (VTM) tubes. Ten millilitres of blood samples in EDTA were also obtained by venepuncture and spun to obtain plasma. Viral RNA was obtained from both swabs and plasma by manual extraction with Qiagen QIAamp viral RNA Mini Kit. Detection was done using a real time fluorescent RT-qPCR BGI kit, on a QuantStudio 3 real-time PCR instrument. Average age of study participants was 41 years, with 74 (59.2%) being male. Out of the 125 individuals tested for COVID-19, 75 (60%) were positive by OP/NP swab. However, only 6 (4.8%) had a positive plasma result for COVID-19 with median Ct value of 32.4. Sensitivity and specificity of RT-PCR SARS-CoV-2 test using plasma was 8% and 100% respectively. There was no false positive recorded, but 69 (55.2%) false negatives were obtained by plasma. SARS-CoV-2 viral RNA was detected, albeit low (4.8%) in plasma. Plasma is likely not a suitable biological sample to diagnose acute SARS-CoV-2 infection. The implication of transfusing blood in this era of COVID-19 needs further investigations

    Comparative performance of SARS-CoV-2 real-time PCR diagnostic assays on samples from Lagos, Nigeria.

    No full text
    A key element in containing the spread of the SARS-CoV-2 infection is quality diagnostics which is affected by several factors. We now report the comparative performance of five real-time diagnostic assays. Nasopharyngeal swab samples were obtained from persons seeking a diagnosis for SARS-CoV-2 infection in Lagos, Nigeria. The comparison was performed on the same negative, low, and high-positive sample set, with viral RNA extracted using the Qiagen Viral RNA Kit. All five assays are one-step reverse transcriptase real-time PCR assays. Testing was done according to each assay's manufacturer instructions for use using real-time PCR platforms. 63 samples were tested using the five qPCR assays, comprising of 15 negative samples, 15 positive samples (Ct = 16-30; one Ct = 35), and 33 samples with Tib MolBiol E-gene Ct value ranging from 36-41. All assays detected all high positive samples correctly. Three assays correctly identified all negative samples while two assays each failed to correctly identify one different negative sample. The consistent detection of positive samples at different Ct/Cq values gives an indication of when to repeat testing and/or establish more stringent in-house cut-off value. The varied performance of different diagnostic assays, mostly with emergency use approvals, for a novel virus is expected. Comparative assays' performance reported may guide laboratories to determine both their repeat testing Ct/Cq range and/or cut-off value
    corecore