157 research outputs found

    Dynamical Trajectory Replanning for Uncertain Environments

    Get PDF
    We propose a dynamical reference generator equipped with an augmented transient “replanning” subsystem that modulates a feedback controller’s efforts to force a mechanical plant to track the reference signal. The replanner alters the reference generator’s output in the face of unanticipated disturbances that drive up the tracking error. We demonstrate that the new reference generator cannot destabilize the tracker, that tracking errors converge in the absence of disturbance, and that the overall coupled reference-tracker system cannot be destabilized by disturbances of bounded energy. We report the results of simulation studies exploring the performance of this new design applied to a two dimensional point mass particle interacting with fixed but unknown terrain obstacles. For more information: Kod*La

    Towards Testable Neuromechanical Control of Architectures for Running

    Get PDF
    Our objective is to provide experimentalists with neuromechanical control hypotheses that can be tested with kinematic data sets. To illustrate the approach, we select legged animals responding to perturbations during running. In the following sections, we briefly outline our dynamical systems approach, state our over-arching hypotheses, define four neuromechanical control architectures (NCAs) and conclude by proposing a series of perturbation experiments that can begin to identify the simplest architecture that best represents an animal\u27s controller

    Nodeless superconductivity arising from strong (pi,pi) antiferromagnetism in the infinite-layer electron-doped cuprate Sr1-xLaxCuO2

    Full text link
    The asymmetry between electron and hole doping remains one of the central issues in high-temperature cuprate superconductivity, but our understanding of the electron-doped cuprates has been hampered by apparent discrepancies between the only two known families: Re2-xCexCuO4 and A1-xLaxCuO2. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized films of Sr1-xLaxCuO2 synthesized by oxide molecular-beam epitaxy. Our results reveal a strong coupling between electrons and (pi,pi) antiferromagnetism that induces a Fermi surface reconstruction which pushes the nodal states below the Fermi level. This removes the hole pocket near (pi/2,pi/2), realizing nodeless superconductivity without requiring a change in the symmetry of the order parameter and providing a universal understanding of all electron-doped cuprates

    Doping evolution and polar surface reconstruction of the infinite-layer cuprate Sr1x_{1-x}Lax_{x}CuO2_{2}

    Get PDF
    We use angle-resolved photoemission spectroscopy to study the doping evolution of infinite-layer Sr1x_{1-x}Lax_{x}CuO2_{2} thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of the superconducting cuprate parent compounds. As carriers are added to the system, a continuous evolution from charge-transfer insulator to superconductor is observed, with the initial lower Hubbard band pinned well below the Fermi level and the development of a coherent low-energy band with electron doping. This two-component spectral function emphasizes the important role that strong local correlations play even at relatively high doping levels. Electron diffraction probes reveal a p(2×2){p(2\times2)} surface reconstruction of the material at low doping levels. Using a number of simple assumptions, we develop a model of this reconstruction based on the polar nature of the infinite-layer structure. Finally, we provide evidence for a thickness-controlled transition in ultrathin films of SrCuO2_2 grown on nonpolar SrTiO3_3, highlighting the diverse structural changes that can occur in polar complex oxide thin films

    Formation of the coherent heavy fermion liquid at the 'hidden order' transition in URu2Si2

    Full text link
    In this article we present high-resolution angle-resolved photoemission (ARPES) spectra of the heavy-fermion superconductor URu2_2Si2_2. Measurements as a function of both excitation energy and temperature allow us to disentangle a variety of spectral features, revealing the evolution of the low energy electronic structure across the hidden order transition. Already above the hidden order transition our measurements reveal the existence of weakly dispersive states below the Fermi level that exhibit a large scattering rate. Upon entering the hidden order phase, these states transform into a coherent heavy fermion liquid that hybridizes with the conduction bands.Comment: 5 pages, 4 figure

    Crossover interference and sex-specific genetic maps shape identical by descent sharing in close relatives

    Get PDF
    Simulations of close relatives and identical by descent (IBD) segments are common in genetic studies, yet most past efforts have utilized sex averaged genetic maps and ignored crossover interference, thus omitting features known to affect the breakpoints of IBD segments. We developed Ped-sim, a method for simulating relatives that can utilize either sex-specific or sex averaged genetic maps and also either a model of crossover interference or the traditional Poisson model for inter-crossover distances. To characterize the impact of previously ignored mechanisms, we simulated data for all four combinations of these factors. We found that modeling crossover interference decreases the standard deviation of pairwise IBD proportions by 10.4% on average in full siblings through second cousins. By contrast, sex-specific maps increase this standard deviation by 4.2% on average, and also impact the number of segments relatives share. Most notably, using sex-specific maps, the number of segments half-siblings share is bimodal; and when combined with interference modeling, the probability that sixth cousins have non-zero IBD sharing ranges from 9.0 to 13.1%, depending on the sexes of the individuals through which they are related. We present new analytical results for the distributions of IBD segments under these models and show they match results from simulations. Finally, we compared IBD sharing rates between simulated and real relatives and find that the combination of sex-specific maps and interference modeling most accurately captures IBD rates in real data. Ped-sim is open source and available from https://github.com/williamslab/ped-sim

    A Formal Proof of PAC Learnability for Decision Stumps

    Full text link
    We present a formal proof in Lean of probably approximately correct (PAC) learnability of the concept class of decision stumps. This classic result in machine learning theory derives a bound on error probabilities for a simple type of classifier. Though such a proof appears simple on paper, analytic and measure-theoretic subtleties arise when carrying it out fully formally. Our proof is structured so as to separate reasoning about deterministic properties of a learning function from proofs of measurability and analysis of probabilities.Comment: 13 pages, appeared in Certified Programs and Proofs (CPP) 202
    corecore