46 research outputs found

    Multimodal Multipart Learning for Action Recognition in Depth Videos

    Full text link
    The articulated and complex nature of human actions makes the task of action recognition difficult. One approach to handle this complexity is dividing it to the kinetics of body parts and analyzing the actions based on these partial descriptors. We propose a joint sparse regression based learning method which utilizes the structured sparsity to model each action as a combination of multimodal features from a sparse set of body parts. To represent dynamics and appearance of parts, we employ a heterogeneous set of depth and skeleton based features. The proper structure of multimodal multipart features are formulated into the learning framework via the proposed hierarchical mixed norm, to regularize the structured features of each part and to apply sparsity between them, in favor of a group feature selection. Our experimental results expose the effectiveness of the proposed learning method in which it outperforms other methods in all three tested datasets while saturating one of them by achieving perfect accuracy

    NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding

    Full text link
    Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. [The dataset is available at: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp]Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    View-invariant action recognition

    Full text link
    Human action recognition is an important problem in computer vision. It has a wide range of applications in surveillance, human-computer interaction, augmented reality, video indexing, and retrieval. The varying pattern of spatio-temporal appearance generated by human action is key for identifying the performed action. We have seen a lot of research exploring this dynamics of spatio-temporal appearance for learning a visual representation of human actions. However, most of the research in action recognition is focused on some common viewpoints, and these approaches do not perform well when there is a change in viewpoint. Human actions are performed in a 3-dimensional environment and are projected to a 2-dimensional space when captured as a video from a given viewpoint. Therefore, an action will have a different spatio-temporal appearance from different viewpoints. The research in view-invariant action recognition addresses this problem and focuses on recognizing human actions from unseen viewpoints

    Feature Boosting Network For 3D Pose Estimation

    Full text link
    In this paper, a feature boosting network is proposed for estimating 3D hand pose and 3D body pose from a single RGB image. In this method, the features learned by the convolutional layers are boosted with a new long short-term dependence-aware (LSTD) module, which enables the intermediate convolutional feature maps to perceive the graphical long short-term dependency among different hand (or body) parts using the designed Graphical ConvLSTM. Learning a set of features that are reliable and discriminatively representative of the pose of a hand (or body) part is difficult due to the ambiguities, texture and illumination variation, and self-occlusion in the real application of 3D pose estimation. To improve the reliability of the features for representing each body part and enhance the LSTD module, we further introduce a context consistency gate (CCG) in this paper, with which the convolutional feature maps are modulated according to their consistency with the context representations. We evaluate the proposed method on challenging benchmark datasets for 3D hand pose estimation and 3D full body pose estimation. Experimental results show the effectiveness of our method that achieves state-of-the-art performance on both of the tasks.Comment: Accepted to T-PAMI. DOI: 10.1109/TPAMI.2019.289442

    Human Action Recognition Based on Temporal Pyramid of Key Poses Using RGB-D Sensors

    Get PDF
    Human action recognition is a hot research topic in computer vision, mainly due to the high number of related applications, such as surveillance, human computer interaction, or assisted living. Low cost RGB-D sensors have been extensively used in this field. They can provide skeleton joints, which represent a compact and effective representation of the human posture. This work proposes an algorithm for human action recognition where the features are computed from skeleton joints. A sequence of skeleton features is represented as a set of key poses, from which histograms are extracted. The temporal structure of the sequence is kept using a temporal pyramid of key poses. Finally, a multi-class SVM performs the classification task. The algorithm optimization through evolutionary computation allows to reach results comparable to the state-of-the-art on the MSR Action3D dataset.This work was supported by a STSM Grant from COST Action IC1303 AAPELE - Architectures, Algorithms and Platforms for Enhanced Living Environments

    Activity recognition in depth videos

    No full text
    Introduction of depth sensors made a big impact on research in visual recognition. By providing 3D information, these cameras help us to have a view-invariant and robust representation of the observed scenes and human bodies. Detection and 3D localization of human body parts are done more accurately and more efficiently in depth maps in comparison with RGB counterparts. Having the 3D structure of the body parts, the articulated and complex nature of human actions makes the task of action recognition difficult. One approach to handle this complexity is dividing it to the kinetics of body parts and analyzing the actions based on the partial descriptors. As the first work in this thesis, we propose a joint sparse regression based learning method which utilizes the structured sparsity to model each action as a combination of multimodal features from a sparse set of body parts. To represent dynamics and appearance of parts, we employ a heterogeneous set of depth and skeleton based features. The proper structure of multimodal multipart features are formulated into the learning framework via the proposed hierarchical mixed norm, to regularize the structured features of each part and to apply sparsity between them, in favor of a group feature selection. Our experimental results expose the effectiveness of the proposed learning method in which it outperforms other methods in all three tested datasets while saturating one of them by achieving perfect accuracy. In addition to depth based representation of human actions, commonly used 3D sensors also provide RGB videos. It is generally accepted that each of these two modalities has different strengths and limitations for the task of action recognition. Therefore, analysis of the RGB+D videos can help us to better study the complementary properties of these two types of modalities and achieve higher levels of performance. In the second work, we propose a new deep autoencoder-based correlation-independence factorization network to separate input multimodal signals into a hierarchy of extracted components. Further, based on the structure of the features, a structured sparsity learning machine is proposed which utilizes mixed norms to apply regularization within components and group selection between them for better classification performance. Our experimental results show the effectiveness of our cross-modality feature analysis framework by achieving state-of-the-art accuracies for action classification on four challenging benchmark datasets, for which we reduce the error rate by more than 40\% in three datasets and saturating the benchmark for the other one. Recent approaches in depth-based human activity analysis achieved outstanding performance and proved the effectiveness of 3D representation for classification of action classes. Currently available depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of training samples, distinct class labels, camera views and variety of subjects. In the third work, we introduce a large-scale dataset for RGB+D human action recognition with more than 56 thousand video samples and 4 million frames, collected from 40 distinct subjects. Our dataset contains 60 different action classes including daily actions, mutual actions, and medical conditions. In addition, we propose a new recurrent neural network structure to model the long-term temporal correlation of the features of each body part, and utilize them for better action classification. Experimental results show the advantages of applying deep learning methods over state-of-the-art hand-crafted features on the suggested cross-subject and cross-view evaluation criteria for our dataset. The introduction of this large scale dataset will enable the community to apply, develop and adapt various data-hungry learning techniques for the task of depth-based and RGB+D human activity analysis.DOCTOR OF PHILOSOPHY (EEE

    Deep Multimodal Feature Analysis for Action Recognition in RGB+D Videos

    No full text

    Skeleton-based action recognition using spatio-temporal lstm network with trust gates

    No full text
    Skeleton-based human action recognition has attracted a lot of research attention during the past few years. Recent works attempted to utilize recurrent neural networks to model the temporal dependencies between the 3D positional configurations of human body joints for better analysis of human activities in the skeletal data. The proposed work extends this idea to spatial domain as well as temporal domain to better analyze the hidden sources of action-related information within the human skeleton sequences in both of these domains simultaneously. Based on the pictorial structure of Kinect's skeletal data, an effective tree-structure based traversal framework is also proposed. In order to deal with the noise in the skeletal data, a new gating mechanism within LSTM module is introduced, with which the network can learn the reliability of the sequential data and accordingly adjust the effect of the input data on the updating procedure of the long-term context representation stored in the unit's memory cell. Moreover, we introduce a novel multi-modal feature fusion strategy within the LSTM unit in this paper. The comprehensive experimental results on seven challenging benchmark datasets for human action recognition demonstrate the effectiveness of the proposed method.NRF (Natl Research Foundation, S’pore)Accepted versio
    corecore