15 research outputs found

    Severe NDE1-mediated microcephaly results from neural progenitor cell cycle arrests at multiple specific stages

    Get PDF
    Microcephaly is a cortical malformation disorder characterized by an abnormally small brain. Recent studies have revealed severe cases of microcephaly resulting from human mutations in the NDE1 gene, which is involved in the regulation of cytoplasmic dynein. Here using in utero electroporation of NDE1 short hairpin RNA (shRNA) in embryonic rat brains, we observe cell cycle arrest of proliferating neural progenitors at three distinct stages: during apical interkinetic nuclear migration, at the G2-to-M transition and in regulation of primary cilia at the G1-to-S transition. RNAi against the NDE1 paralogue NDEL1 has no such effects. However, NDEL1 overexpression can functionally compensate for NDE1, except at the G2-to-M transition, revealing a unique NDE1 role. In contrast, NDE1 and NDEL1 RNAi have comparable effects on postmitotic neuronal migration. These results reveal that the severity of NDE1-associated microcephaly results not from defects in mitosis, but rather the inability of neural progenitors to ever reach this stage

    Dynamics of Dynamin during Clathrin Mediated Endocytosis in PC12 Cells

    Get PDF
    Members of the dynamin super-family of GTPases are involved in disparate cellular pathways. Dynamin1 and dynamin2 have been implicated in clathrin-mediated endocytosis. While some models suggest that dynamin functions specifically at the point of vesicle fission, evidence also exists for a role prior to fission during vesicle formation and it is unknown if there is a role for dynamin after vesicle fission. Although dynamin2 is ubiquitously expressed, dynamin1 is restricted to the nervous system. These two structurally similar endocytic accessory proteins have not been studied in cells that endogenously express both.The present study quantitatively assesses the dynamics of dynamin1 and dynamin2 during clathrin-mediated endocytosis in PC12 cells, which endogenously express both proteins. Both dynamin isoforms co-localized with clathrin and showed sharp increases in fluorescence intensity immediately prior to internalization of the nascent clathrin-coated vesicle. The fluorescence intensity of both proteins then decreased with two time constants. The slower time constant closely matched the time constant for the decrease of clathrin intensity and likely represents vesicle movement away from the membrane. The faster rate may reflect release of dynamin at the neck of nascent vesicle following GTP hydrolysis.This study analyses the role of dynamin in clathrin-mediated endocytosis in a model for cellular neuroscience and these results may provide direct evidence for the existence of two populations of dynamin associated with nascent clathrin-coated vesicles

    Different phases of dynamin intensity decrease at sites of clathrin-mediated endocytosis in PC12 cells.

    No full text
    <p>PC12 cells co-transfected with clathrin-dsRed and dynamin1-EGFP (A) or dynamin2-EGFP (B) were imaged by live-cell TIR-FM. Decreases in dynamin fluorescence were aligned so that the peak was set to time 0, and clathrin and Dynamin fluorescence at time 0 were normalized to 1. (B and C) demonstrate the decreases in clathrin and dynamin1 or dynamin2, at the sites of 30 or 28 disappearing clathrin spots, respectively. In each case, the decrease in clathrin intensity fits a single exponential, while both dynamin1 and dynamin2 fit double exponentials (all r<sup>2</sup> values >0.98).</p
    corecore