40 research outputs found

    Untangling phylogenetic patterns and taxonomic confusion in tribe Caryophylleae (Caryophyllaceae) with special focus on generic boundaries

    Full text link
    Assigning correct names to taxa is a challenging goal in the taxonomy of many groups within the Caryophyllaceae. This challenge is most serious in tribe Caryophylleae since the supposed genera seem to be highly artificial, and the available morphological evidence cannot effectively be used for delimitation and exact determination of taxa. The main goal of the present study was to re–assess the monophyly of the genera currently recognized in this tribe using molecular phylogenetic data. We used the sequences of nuclear ribosomal internal transcribed spacer (ITS) and the chloroplast gene rps16 for 135 and 94 accessions, respectively, representing all 16 genera currently recognized in the tribe Caryophylleae, with a rich sampling of Gypsophila as one of the most heterogeneous groups in the tribe. Phylogenetic trees were reconstructed using maximum parsimony and Bayesian inference methods. The results show that most of the large genera of Caryophylleae are not monophyletic. As a result, we propose a new classification system matching both molecular phylogenetic and morphological evidence. The main taxonomic conclusions include: (1) the description of three new genera, (2) treating five small genera as synonyms, (3) resurrecting the genus Heterochroa with six species, and (4) proposing 23 new combinations plus 2 replacement names at the specific level. As a result, we recognize 14 genera in Caryophylleae. A diagnostic key to all genera of Caryophylleae is provided.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146908/1/tax6716.pd

    A new taxonomic backbone for the infrageneric classification of the species‐rich genus Silene (Caryophyllaceae)

    Full text link
    The systematization of species in plant taxonomy based on the phylogenetic relationships among them are of utmost importance and also very challenging in large genera. In those, phylogenetic results often may suggest substantially different relationships than previous classifications, and call for large‐scale taxonomic revisions. Delimitation of the genus Silene has been and is still somewhat controversial, and recent molecular phylogenetic studies have settled several monophyletic groups that differ substantially from previous taxonomies. The infrageneric taxonomy of Silene s.str. has not been updated as a whole taking the phylogenetic information into account. In this study, we review previous phylogenetic results based on multiple loci, and conducted comprehensive gene tree analyses based on the nrDNA ITS and cpDNA rps16 regions for 1586 and 944 samples representing 415 and 397 species, respectively, including Silene and its allies, as well as a species tree analysis including 262 samples representing 243 species. We sampled representatives from all 44 sections recognized in the most recent global revision of the genus. The results support the recognition of three subgenera, i.e., S. subg. Behenantha, S. subg. Lychnis and S. subg. Silene, which is partly in agreement with previous molecular phylogenetic findings and contradicts all previous traditional classifications. Silene sect. Atocion, with a few annual species showing a narrow distribution range in the eastern Mediterranean, is treated as incertae sedis because of its uncertain phylogenetic position, possibly due to exceptionally high substitution rates. Silene subg. Lychnis, weakly supported as sister to the other subgenera, splits into three main clades and includes four sections. Silene subg. Behenantha, which forms a possible sister group in relation to S. subg. Silene, is poorly resolved basally and includes a large number of mostly small clades recognized as 18 sections. In S. subg. Silene, 11 sections are recognized, among which four are broadly circumscribed: S. sect. Auriculatae, S. sect. Sclerocalycinae, S. sect. Silene and S. sect. Siphonomorpha. Silene sect. Acutifoliae and S. sect. Portenses are described here as new taxa, whereas new status or new combinations are proposed for S. sect. Anotites, S. sect. Muscipula, S. sect. Petrocoma, S. sect. Pulvinatae, S. sect. Sclerophyllae and S. sect. Uebelinia. Five new combinations and two new names are proposed for taxa in Silene formerly assigned to Lychnis and Uebelinia. The correct infrageneric nomenclature compatible with the new infrageneric system is provided along with synonymy and type citations. Shortcomings of this study, such as the lack of a morphological diagnostic key and sparse sampling of some large sections, are listed and discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156144/5/tax12230.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156144/4/tax12230-sup-0006-Supinfo06.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156144/3/tax12230-sup-0001-Supinfo01.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156144/2/tax12230-sup-0007-FigureS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156144/1/tax12230_am.pd

    Assembled Plastid and Mitochondrial Genomes, as well as Nuclear Genes, Place the Parasite Family Cynomoriaceae in the Saxifragales

    Get PDF
    Cynomoriaceae, one of the last unplaced families of flowering plants, comprise one or two species or subspecies of root parasites that occur from the Mediterranean to the Gobi Desert. Using Illumina sequencing, we assembled the mitochondrial and plastid genomes as well as some nuclear genes of a Cynomorium specimen from Italy. Selected genes were also obtained by Sanger sequencing from individuals collected in China and Iran, resulting in matrices of 33 mitochondrial, 6 nuclear, and 14 plastid genes and rDNAs enlarged to include a representative angiosperm taxon sampling based on data available in GenBank. We also compiled a new geographic map to discern possible discontinuities in the parasites' occurrence. Cynomorium has large genomes of 13.70-13.61 (Italy) to 13.95-13.76 pg (China). Its mitochondrial genome consists of up to 49 circular subgenomes and has an overall gene content similar to that of photosynthetic angiosperms, while its plastome retains only 27 of the normally 116 genes. Nuclear, plastid and mitochondrial phylogenies place Cynomoriaceae in Saxifragales, and we found evidence for several horizontal gene transfers from different hosts, as well as intracellular gene transfers

    Assembled Plastid and Mitochondrial Genomes, as well as Nuclear Genes, Place the Parasite Family Cynomoriaceae in the Saxifragales

    Get PDF
    Cynomoriaceae, one of the last unplaced families of flowering plants, comprise one or two species or subspecies of root parasites that occur from the Mediterranean to the Gobi Desert. Using Illumina sequencing, we assembled the mitochondrial and plastid genomes as well as some nuclear genes of a Cynomorium specimen from Italy. Selected genes were also obtained by Sanger sequencing from individuals collected in China and Iran, resulting in matrices of 33 mitochondrial, 6 nuclear, and 14 plastid genes and rDNAs enlarged to include a representative angiosperm taxon sampling based on data available in GenBank. We also compiled a new geographic map to discern possible discontinuities in the parasites' occurrence. Cynomorium has large genomes of 13.70-13.61 (Italy) to 13.95-13.76 pg (China). Its mitochondrial genome consists of up to 49 circular subgenomes and has an overall gene content similar to that of photosynthetic angiosperms, while its plastome retains only 27 of the normally 116 genes. Nuclear, plastid and mitochondrial phylogenies place Cynomoriaceae in Saxifragales, and we found evidence for several horizontal gene transfers from different hosts, as well as intracellular gene transfers

    A worldwide molecular phylogeny and classification of the leafy spurges, Euphorbia subgenus Esula (Euphorbiaceae)

    Full text link
    The leafy spurges, Euphorbia subg. Esula, make up one of four main lineages in Euphorbia. The subgenus comprises about 480 species, most of which are annual or perennial herbs, but with a small number of dendroid shrubs and nearly leafless, pencilâ stemmed succulents as well. The subgenus constitutes the primary northern temperate radiation in Euphorbia. While the subgenus is most diverse from central Asia to the Mediterranean region, members of the group also occur in Africa, in the Indoâ Pacific region, and in the New World. We have assembled the largest worldwide sampling of the group to date (273 spp.), representing most of the taxonomic and geographic breadth of the subgenus. We performed phylogenetic analyses of sequence data from the nuclear ribosomal ITS and plastid ndhF regions. Our individual and combined analyses produced wellâ resolved phylogenies that confirm many of the previously recognized clades and also establish a number of novel groupings and placements of previously enigmatic species. Euphorbia subg. Esula has a clear Eurasian center of diversity, and we provide evidence for four independent arrivals to the New World and three separate colonizations of tropical and southern Africa. One of the latter groups further extends to Madagascar and New Zealand, and to more isolated islands such as Réunion and Samoa. Our results confirm that the dendroid shrub and stemâ succulent growth forms are derived conditions in E. subg. Esula. Stemâ succulents arose twice in the subgenus and dendroid shrubs three times. Based on the molecular phylogeny, we propose a new classification for E. subg. Esula that recognizes 21 sections (four of them newly described and two elevated from subsectional rank), and we place over 95% of the accepted species in the subgenus into this new classification.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146962/1/tax6221.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146962/2/tax6221-sup-004-pdf.pd

    A new species of Astragalus L. sect. Acidodes Bimge (Fabaceae) from Iran

    No full text
    Volume: 2Start Page: 283End Page: 28

    Notes on Astracantha marashica (Fabaceae)

    No full text
    Volume: 5Start Page: 287End Page: 29

    Neue Arten von Astragalus L. sect. Campylanthus Bunge und sect. Megalocystis Bunge im Iran

    No full text
    Volume: 1Start Page: 259End Page: 26
    corecore