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Abstract

Cynomoriaceae, one of the last unplaced families of flowering plants, comprise one or two species or subspecies of root parasites

that occur from the Mediterranean to the Gobi Desert. Using Illumina sequencing, we assembled the mitochondrial and plastid

genomes as well as some nuclear genes of a Cynomorium specimen from Italy. Selected genes were also obtained by Sanger

sequencing from individuals collected in China and Iran, resulting in matrices of 33 mitochondrial, 6 nuclear, and 14 plastid genes

and rDNAs enlarged to include a representative angiosperm taxon sampling based on data available in GenBank. We also compiled a

newgeographicmaptodiscernpossiblediscontinuities in theparasites’occurrence.Cynomoriumhas largegenomesof13.70–13.61

(Italy) to 13.95–13.76 pg (China). Its mitochondrial genome consists ofup to 49 circular subgenomes and has an overall gene content

similar to that of photosynthetic angiosperms, while its plastome retains only 27 of the normally 116 genes. Nuclear, plastid and

mitochondrial phylogenies place Cynomoriaceae in Saxifragales, and we found evidence for several horizontal gene transfers from

different hosts, as well as intracellular gene transfers.

Key words: chondriome, Cynomorium, Mediterranean-Irano-Turanian, plastome, parasitic plants, horizontal gene transfer.

Introduction

Current phylogenetic systems accept 416 families of flowering

plants in 64 orders, with the relationships of most of them

known due to molecular phylogenies (Stevens 2001 onwards;

Angiosperm Phylogeny Group, 2009; 2016 came out when

this study was in revision and includes our results as a personal

communication). Among the most difficult to place clades are

parasitic plants. They present special challenges because of the

deep changes in their genomes that complicate analysis with

phylogenetic standard markers and because of the difficulty of

obtaining nonhost-contaminated DNA. Horizontal gene trans-

fers (HGTs) between parasites and hosts, resulting in contra-

dictory gene trees, further complicate the task (Nickrent et al.

1998, 2004, 2005; Barkman et al. 2007; Xi et al. 2012, 2013;

Zhang et al. 2014) and so do high substitution rates in parasite

genomes that can lead to long-branch attraction

(Nickrent et al. 1997; Barkman et al. 2007; Bellot and

Renner 2014). Phylogenetically long unplaced parasite families
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include the Lennoaceae (Boraginales) and the Cynomoriaceae

(Stevens 2001 onwards; Angiosperm Phylogeny Group 2009).

Here, we place the latter, using genomic data from their as-

sembled organellar genomes as well as selected nuclear

genes.

Cynomoriaceae comprise one or two species or subspecies,

Cynomorium coccineum L. and Cynomorium songaricum

Rupr. (= C. coccineum subspecies songaricum (Rupr.)

J.Léonard), occurring from the Canary Islands (Lanzarote)

through the Mediterranean region to the adjacent Irano-

Turanian region, including the Mongolian deserts in western

China (fig. 1). The plants grow in rocky or sandy soils, often in

saline habitats close to the coast. Their inflorescences are up to

40 cm tall with hundreds of small reddish flowers (fig. 1), and

there are no green parts that would carry out photosynthesis.

Cynomoriaceae therefore completely rely on water and nutri-

ents from their hosts. Fitting its huge geographic range,

Cynomorium parasitizes the roots of plants from many

genera and families. In the western part of the genus range,

these are Amaranthaceae subfam. Chenopodioideae (usually

Atriplex or Salsola), Plumbaginaceae (e.g., Limonium),

Tamaricaceae (Tamarix), Frankeniaceae (all in the

Caryophyllales), Cistaceae (Malvales), Fabaceae (Fabales),

and Asteraceae (Asterales). In its eastern range (Afghanistan,

Mongolia/China), Cynomorium parasitizes Nitraria, a genus of

four to five species in Asia and the Mediterranean (Zhang et al.

2015), Peganum harmala L. (Teryokhin et al. 1975; Yang et al.

2012; also Nitrariaceae, Sapindales), Tamarix and Reaumuria

(both Tamaricaceae), Zygophyllum (Zygophyllaceae), and

Salsola (Chen and Funston 2007; Yang et al. 2012; Cui

et al. 2013). Cynomoriaceae may have antioxidant properties

(Zucca et al. 2013), and their inflorescences are widely col-

lected as an aphrodisiac throughout the Middle East and in

China, where the plant’s conservation status is thought to be

critical (Cui et al. 2013).

The highly reduced flowers and poor preservation (when

dried) of the large, fleshy inflorescences in the World’s her-

baria have made morphological homology assessment diffi-

cult. Tentative inclusion of Cynomorium in Santalales based on

the parasitic habit (Cronquist 1968; Takhtajan 1973) was not

supported by the first mitochondrial (matR) and nuclear (small

and large rDNA subunits) sequences of Cynomoriaceae,

which came from a Spanish population and showed that

Cynomorium might belong in the Saxifragales (Nickrent

et al. 2005). Sequences of the mitochondrial genes atp1

and cox1 from a specimen from an unknown location

placed Cynomorium in the Sapindales, possibly due to a hori-

zontal acquisition from a host (Barkman et al. 2007); the col-

lection location and host are unknown, and the voucher has

been lost (dePamphilis CW, personal communication to SSR

on September 22, 2015). Surprisingly, the inverted repeat (IR)

region sequenced from Chinese material yielded a placement

in the Rosaceae, close to Prunus and Fragaria (Zhang et al.

2009). Su et al. (2015, their supplementary appendix S1)

recently summarized these contradictory findings, stressing

the problem of HGT and extensive intraindividual variation in

plastid rDNA, which they attribute to heteroplasmy in

Cynomorium (Garcı́a et al. 2004).

We here use newly collected material of Cynomoriaceae

from populations in China, Iran, and Italy, and Illumina and

Sanger sequencing, to obtain 1) a broader sample of gene

regions than sequenced in any previous study and 2) a

global picture of their copy number and genomic location

(whether in the nucleus, plastome, or mitochondrial

genome). To calculate the expected genomic coverage

(which is essential for interpreting Illumina data), we obtained

C value measurements of plants from the western (Italy) and

eastern (China) part of the family’s geographic range. We

assembled the mitochondrial and chloroplast genomes of an

Italian Cynomorium and built angiosperm-wide matrices from

different genes to try to circumnavigate the problem of HGT,

which can often be detected by comparing topologies from

different markers.

Materials and Methods

Collection of Material and DNA Sequencing

Cynomorium specimens were collected in Iran, Italy, and two

locations in China, in Ningxia Province and in Gansu Province,

both in the Mongolian desert region. Table 1 provides collec-

tion locations, herbarium voucher information, and GenBank

accession numbers. Total genomic DNA was extracted from

fresh material with the DNeasy Plant Maxi Kit (Qiagen) follow-

ing the manufacturer’s instructions. The DNA of the Italian

plant was sent to Genewiz for preparation of five standard

paired-end libraries with insert sizes of 200–500 bp, and of

one mate-pair library with an insert size of approximately

3.5–4.5 kb. Sequencing was performed on an Illumina

HiSeq2500 machine in “Rapid Run Mode.” For Sanger se-

quencing of selected Chinese and Iranian Cynomorium

genes (see below), new primers were designed based on

the Italian Cynomorium contigs using Primer3Plus v. 2.3.6

(Untergasser et al. 2012). Supplementary table S1,

Supplementary Material online, shows primer sequences and

annealing temperatures. Polymerase chain reaction (PCR)

products were purified with the ExoSAP or FastAP clean-up

kits (Fermentas Life sciences, St. Leon-Rot, Germany), and se-

quencing relied on the Big Dye Terminator cycle sequencing

kit (Applied Biosystems, Foster City, CA, USA) and an ABI

3130-4 automated capillary sequencer. To confirm the

length of the single copy (SC) regions of the plastome, their

junctions with the IRs, as well as a low-coverage region in the

large single copy (LSC) region (Results), we performed PCR

and Sanger resequencing using newly designed primers (sup-

plementary table S1, Supplementary Material online), includ-

ing long-range PCR amplifications using the Q5� High Fidelity
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FIG. 1.—Distribution and habit of Cynomorium. (A) Distribution range of Cynomorium obtained from the map in Hansen (1986), relevant floras, and 203

GPS coordinates retrieved from the Global Biodiversity Information Facility (GBIF) portal in August 2015. Arrows indicate our own collections (details in table

1). Background map from Naturalearthdata.com. (B–J) Cynomorium plants from Italy (B, E, H), N. Cusimano and C. Cusimano 2, Iran (C and I) Zarre 59621,

and China (D) S.X. Luo 2014 from Tengger Desert; (F, G, J) G. Sun 1, from Gansu. Photos B to G by the respective collectors, photos H to J by N. Cusimano.

(B–D) Plants in situ. (E) Part of a rhizome with young inflorescences and connected to the host roots (Atriplex portulacoides). (F) A fly (Musca spec.) visiting

Cynomorium in the Tengger Desert. (G) Chinese plant connected to the host root (Nitraria tangutorum). (H) Young male and female flowers and a bract,

showing a red stamen basis (arrow). (I) Stamen from herbarium material. (J) Male flowers showing white stamen bases (arrow). The color of the stamen basis

has been used to differentiate C. coccineum subsp. songaricum from Cynomorium coccineum subsp. coccineum.
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DNA Polymerase (New England BioLabs Inc.), following the

manufacturer’s protocol.

Genome Size Estimation

The C value of two Italian individuals of Cynomorium was

measured using flow cytometry with propidium iodide (PI)

as the DNA stain and Pisum sativum ‘Kleine Rheinländerin’

as the standard. Fresh material was cochopped together

with the standard plant in Otto’s buffer I (Otto et al. 1981).

The resulting suspension was filtered (30-mm nylon mesh),

RNase treated, and incubated in PI containing Otto’s buffer

II. A CyFlow ML flow cytometer (Partec, Muenster, Germany)

equipped with a green laser (100 mW, 532 nm, Cobolt

Samba, Cobolt, Stockholm, Sweden) was used for the fluo-

rescence measurements, with 5,000 particles measured per

run and three runs performed per plant preparation. The C

value was calculated according to the formula: 1C

valueObject = (mean G1 nuclei fluorescence intensityObject/

mean G1 nuclei fluorescence intensityStandard)*1C

valueStandard. The peak CV percentages usually were less

than 5%. The C value of a Chinese individual was measured

in Kunming, also using a Partec CyFlow ML flow cytometer

and the method of Temsch et al. (2010).

Genome Assembly

De novo assembly and scaffolding of the Illumina reads were

conducted using CLC Genomic workbench v.7 after adapter

trimming and removing bases with poor quality (assembly pa-

rameters: similarity fraction = 0.8, length fraction = 0.5, mis-

match cost = 2, insertion cost = 3, deletion cost = 3, word

size = 45, bubble size = 98, minimum contig length = 1,000).

The read depth of each contig and of the final genomes was

calculated after remapping the reads showing 100% identity

across 100% of their length and removing potential PCR du-

plicates using the rmdup command of the Samtools suite (Li

et al. 2009). Consensus sequences of the assembled contigs/

scaffolds were blasted (BLASTn) against 52 plastid genomes to

identify plastome fragments. More potential plastid contigs

were identified by: 1) blasting the plastid genes of

Lindenbergia philippensis (GenBank accession HG530113),

several Saxifragales species (Liquidambar formosa

(KC588388), Paeonia obovata (KJ206533), Penthorum chi-

nense (JX436155), Sedum sarmentosum (JX427551)), and

Nicotiana undulata (JN563929) against the Cynomorium

contig pool using the megablast algorithm, and 2) mapping

the reads to the plastid genes of S. sarmentosum. To identify

contigs belonging to the mitochondrial genome, we blasted

them against the mitochondrial genes of Carica papaya

(EU431224), Capsicum annuum (KJ865410), Salvia miltior-

rhiza (KF177345), and Malus domestica (NC018554). To iden-

tify mitochondrial contigs not carrying any gene, we

conducted less stringent BLAST searches (smaller word size,

considering lower bitscores) against 28 plant mitochondrialT
a
b
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genomes. Many mitochondrial genes were found in more

than one copy in Cynomorium, so extra-caution had to be

taken to ensure they were assigned to the correct genomic

compartment. We used two strategies: 1) the whole contig

including the mitochondrial gene region was blasted (BLASTn)

against GenBank. If only the gene yielded a hit, we cut it out

from the contig and blasted the remaining parts separately; 2)

the contig’s read-depth was analyzed, after taking into ac-

count possible biases due to GC content (Results). Nuclear

copies of plastid or mitochondrial genes are expected to

occur at 1–2 orders of magnitude lower coverage than

genes residing in the plastome or the chondriome, and this

allows distinguishing organelle fragments from potential nu-

clear copies. Assemblies of both organelle genomes were ex-

tended, combined and refined by iterative read remapping

using CLC Genomics Workbench v. 8.5.1 (http://www.

clcbio.com) and Geneious v. 8.1.6 (Biomatters, http://www.

geneious.com/). Annotations of the plastome and chondriome

were performed with DOGMA and GeSeq (http://dogma.

ccbb.utexas.edu, https://chlorobox.mpimp-golm.mpg.de/

geseq-app.html).

Selection of Phylogenetic Markers and Taxon Sampling

We selected markers from all three genomic compartments

for an angiosperm-wide taxon sampling, with special focus on

sequences from Saxifragales, Rosales, and frequently reported

hosts (Sapindales, Caryophyllales). For the plastid gene align-

ments we added our Cynomorium plastid sequences to a re-

duced version of the matrix of Ruhfel et al. (2014), keeping

one representative per family of angiosperms. In the plastome

of Cynomorium, we found 27 genes of which some were

highly degenerated (Results). For reliable alignments and to

reduce long-branch attraction, we selected genes that

showed�70% identity between Cynomorium and a photo-

synthetic angiosperm (L. formosa, GenBank accession

KC588388). This resulted in 14 alignments of 10 plastid pro-

tein-coding genes (clpP, rpl2, rpl14, rpl16, rpl36, rps3, rps7,

rps11, rps19, and ycf2), and four plastid rDNAs (rrn4.5, rrn5,

rrn16, and rrn23).

From 41 mitochondrial genomes in GenBank, we selected

33 genes that satisfy the above-mentioned criteria. As no mi-

tochondrial genome of Sapindales is available so far, we

downloaded the Illumina paired read data of Citrus� paradisi

� Citrus trifoliata (GenBank accession Nr. SRX374184) and

assembled them de novo in the CLC Genomics Workbench

with the following parameters: word size: 40; similarity frac-

tion 0.9; length fraction: 0.6. This yielded 893,637 contigs

with an N50 of 858 bp, and a total length of

580,244,525 bp. We then blasted 40 mitochondrial genes

(not including the tRNAs) of the Rosales species Malus �

domestica (GenBank accession NC 018554) against the

Citrus contig pool with a maximal E-value of e-20 with the

BLASTn tool implemented in Geneious v.8. If the coverage of a

recovered contig was between 2,000 and 2,500�, and the

rest of the contig yielded plant mitochondrial hits in a BLASTn

search in GenBank, it was considered mitochondrial, anno-

tated with the Annotation tool implemented in Geneious

v.8, and cross-checked with the ORF finder tool. This yielded

35 mitochondrial genes of Citrus� paradisi� Citrus trifoliata.

From the nuclear genome, we selected four genes (MSH1,

PEPC, PHYA, and SMC2) and the 18S and 26S rDNAs because

they could be unambiguously retrieved from the contigs of the

Italian Cynomorium and had homologs in GenBank from

many other angiosperm orders. We avoided paralogues by

choosing low-copy-number genes (MSH1 and SMC2; Zhang

et al. 2012), and controlled for them by inspecting the gene

annotations, reblasting the sequences against GenBank, and

also by checking the single-gene trees for characteristic dupli-

cated topologies where paralogues would form two similar

clades in the same tree.

All single-gene matrices included at least one gene copy

from the Italian Cynomorium obtained by Illumina sequencing,

and when a gene was found multiple times in the same or

different genomic compartments, all copies were included in

the single-gene alignment. In addition, sequences of all plastid

genes except ycf2, and of the mitochondrial matR, nad5, and

rps3 were obtained by Sanger sequencing from our Chinese

and Iranian plants and added to the matrices. We also in-

cluded sequences of Cynomorium from GenBank; accession

numbers are given in table 1 for Cynomorium and in supple-

mentary table S2, Supplementary Material online for other

taxa.

DNA Alignments and Phylogenetic Analyses

Mitochondrial genes and ribosomal DNAs were aligned with

MAFFT (Katoh 2013), using the Geneious R7 plugin. More

variable plastid and nuclear protein-coding regions were

aligned based on amino-acid information, using PAL2NAL

(Suyama et al. 2006) and MAFFT, or alternatively MACSE

(Ranwez et al. 2011). To avoid possible biases in the phyloge-

netic reconstructions, we removed the 33-bp long coconver-

sion tract of atp1, the intron of cox1 including the

coconversion tract, and the RNA editing sites of all mitochon-

drial genes (as annotated in the published Arabidopsis thali-

ana, Brassica napus, and Citrullus lanatus mitochondrial

genomes, see supplementary table S2, Supplementary

Material online, for accession numbers).

Matrices of all individual genes were used in maximum

likelihood (ML) phylogenetic tree searches conducted in

RAxML v.8.2.4 (Stamatakis 2014) with 100 bootstrap repli-

cates. Because most single-gene regions were not sufficiently

informative to recover the expected angiosperm topology, the

same analyses were also performed using a constrained topol-

ogy where only Cynomorium was free to move, using the -g

option of RAxML and user-designed fully bifurcating trees

based on the topology from APG IV. There were no supported

Angiosperm Mystery Family Joins Saxifragales GBE

Genome Biol. Evol. 8(7):2214–2230. doi:10.1093/gbe/evw147 Advance Access publication June 29, 2016 2219

Deleted Text: (i
Deleted Text: (ii
Deleted Text: -
http://www.clcbio.com
http://www.clcbio.com
http://www.geneious.com/
http://www.geneious.com/
http://dogma.ccbb.utexas.edu
http://dogma.ccbb.utexas.edu
https://chlorobox.mpimp-golm.mpg.de/geseq-app.html
https://chlorobox.mpimp-golm.mpg.de/geseq-app.html
Deleted Text: <italic>p</italic>
Deleted Text: <italic>m</italic>
Deleted Text: ,
Deleted Text: <italic>t</italic>
Deleted Text: <italic>s</italic>
Deleted Text: <italic>Liquidambar</italic> 
Deleted Text: <italic>x</italic>
Deleted Text: <italic>x</italic>
Deleted Text: <italic>x</italic>
Deleted Text:  
Deleted Text: x
Deleted Text: <italic>x</italic>
Deleted Text: <italic>x</italic>
Deleted Text: -
Deleted Text: T
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw147/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw147/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw147/-/DC1
Deleted Text: <italic>a</italic>
Deleted Text: <italic>p</italic>
Deleted Text: <italic>a</italic>
Deleted Text: -
Deleted Text: -
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw147/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw147/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw147/-/DC1
Deleted Text:  --


conflicts (ML bootstrap support [BS]�70%) between uncon-

strained and constrained trees, so we base further analyses

and interpretations on the latter because they provide a con-

sistent angiosperm background. To assess the divergence of

the Cynomorium genes we compared the root-to-

Cynomorium branch length to the other root-to-tip lengths

in each single-gene tree. Finally, we applied to our single-gene

matrices the evolutionary placement algorithm (Berger et al.

2011) implemented in RAxML, which uses ML inference to

assign a query sequence to the most likely node(s) in a fixed

topology. If the probability of the placement is not 1, the

probabilities of alternative placements are estimated. The

fixed topologies we used were the same as the ones we

used to perform the constrained ML tree reconstructions

(above).

Analyses of the plastid genes did not reveal statistically sup-

ported conflicts, except for the Cynomorium sequences de-

posited in GenBank by Zhang et al. (2009). We thus

concatenated all plastid genes, keeping these conflicting

Cynomorium sequences as separate taxonomic units

(Results). The concatenated final plastid matrix contained

only plastome-located genes, had a length of 18,104 nt,

and included 83 species from 83 families and 42 orders

(using the APG IV classification). Concatenation of the nuclear

genes (which yielded no statistically supported topological

conflicts), resulted in a matrix of 13,723 nucleotides including

388 species from 388 families and 58 orders (supplementary

table S2, Supplementary Material online). The mitochondrial

genes did not show globally conflicting topologies, but their

concatenation was less straightforward due to multiple mito-

chondrion-located Cynomorium copies of the same gene

sometimes falling in different orders (Results). We therefore

concatenated only those mitochondrial genes that yielded sta-

tistically unsupported placements of Cynomorium and that

fulfilled the condition that their multiple copies (if any)

formed a clade (so that it was meaningful to pick one ran-

domly to concatenate it with other mitochondrial genes). This

approach resulted in at least one copy of atp1, atp6, atp8,

atp9, ccmB, cox2, cox3, nad1 exon 5, rps3, rrn18, and rrn26

sequences not being included in the main concatenated

Cynomorium sequence, but being kept as separate taxonomic

units. The concatenated matrix comprised 33,271 nt (26

genes in the main Cynomorium sequence) and 46 species

from 28 families and 21 orders.

The best partition scheme and evolutionary models for the

three concatenated matrices were found with PartitionFinder

v. 1.1.1 (Lanfear et al. 2012) in a greedy search of all possible

combinations involving single gene and/or codon position par-

titioning. Phylogenetic inferences were performed on each

concatenated matrix using RAxML v.8.1.24 (Stamatakis

2014) through the CIPRES Science Gateway (Miller et al.

2010) with 1,000 bootstrap replicates, and following the

best partition scheme found by PartitionFinder, involving 7

(plastid), 9 (nuclear), or 13 (mitochondrial) partitions.

Because too many partitions can be problematic for accurate

parameters estimation (Roberts et al. 2009) we also ran the

same analysis without partitions. The concatenated mitochon-

drial matrix was run using the angiosperm topology as con-

straint and allowing only Cynomorium to move.

Neighbor-net splits graph analysis, implemented in

SplitsTree (Huson and Bryant 2006), was used to depict the

genetic distances, using patristic distances, for a matrix com-

prising parts of the genes clpP, rpl2, rpl14, rpl16, and rrn23 of

several Cynomorium accessions.

Results

Genome Size Estimation and Sequencing Depth

The 1C values of two Italian plants were 13.70 and 13.61 pg.

The 1C values of three Chinese plants were 13.76, 12.95, and

13.02 pg. Illumina sequencing of one of the Italian plants

yielded 1.58 billion reads from the paired-end library and

0.288 billion reads from the mate-pair library (all reads being

150 bp long), corresponding to an expected coverage of 17�

before read cleaning. De novo assembly of the remaining 1.68

billion clean reads yielded 1,123,965 contigs and scaffolds

with an average size of 3,200 bp representing 3.6 Gbp or

approximately 26% of the genome. The N50 was 4,423 bp,

and the largest scaffold was 299,171 bp long. We found 53

contigs for the mitochondrial genome that we could assemble

as 49 circular subgenomes (below). For the plastome we iden-

tified five contigs that we could assemble in one circular mol-

ecule; the longest contig was 19,897 bp long, with an average

coverage (ac) of 8,609�, and contained genes typically found

in the IR; a second contig was identical to a subpart of the

latter (3168 bp, ac = 2362�); a third one contained accD and

other genes typical of the LSC region (3,244 bp, ac = 1218�),

a fourth contig contained clpP exon 3 and rps12 (455 bp,

ac = 280�), and the last contig contained a part of ycf1

(1278 bp, ac = 144�). Nuclear contigs have average per-

base read depths of 17 ± 18.5� (table 2, supplementary fig.

S1A, Supplementary Material online), the average per-base

read depth of the mitochondrial genome is 2,772 ± 665�,

and that of the plastome is 3,660 ± 3,379. With mate pair

reads only, the plastid genome has a more homogeneous

coverage, 2.5� higher on average than that of the mitochon-

drial genome (table 2, supplementary fig. S1A, Supplementary

Material online). The few low per-base read depths observed

in the mitochondrial genome and the plastid genomes (sup-

plementary fig. S1A, Supplementary Material online) are due

to the presence of low-complexity regions, especially AT rich

regions. This is seen in supplementary figure S1B and C,

Supplementary Material online, which show that the coverage

depends on the GC content, with regions having a lower GC

content being less covered. This pattern is not due to the

restrictive mapping criteria (100% identity of 100% of

length) as it is unaffected by less stringent mapping
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parameters. The GC content of the plastome was 19.5% in

noncoding regions, 24% in the ycf genes, 21.5% in suspected

pseudogenes, and higher in ribosomal genes (31.9%),

tRNAs (47.6%), and rRNAs (50%), and those are followed

by variations in per-base read depth, as shown in figure 2,

supplementary figure S1B and S1C, Supplementary Material

online.

Structure and Gene Content of the Organellar Genomes
of Cynomorium

The plastome of Cynomorium, presented in figure 2, has a

length of 45,519 bp and resulted from the concatenation of

five contigs after iterative extensions. It is divided in two SC

regions separated by an IR. A low-complexity (GC = 11%)

region between rps18 and rps12 exon 1 had low read-

depth (ca. 10�), but Sanger resequencing and/or the

Illumina reads supported our assembly, both at this low-cov-

erage region and at the four junctions between the SC and IR

regions; in some cases, the sequences obtained by Sanger

sequencing were unclear due to mononucleotide stretches

(supplementary fig. S2, Supplementary Material online).

All genes involved in photosynthesis (ndh, atp, pet, psa,

psb, rbcL) are missing from the plastome of Cynomorium,

which retains a total of 27 genes, namely 14 ribosomal protein

genes, clpP, accD, ycf1, and ycf2, the four rRNAs, and five

tRNAs (trnE, trnH, trnI, trnfM, and trnQ). Different from what

is observed in the outgroup Liquidambar (fig. 2), the IR makes

up the largest part of the plastome, with a length of 2 �

20,136 bp, and comprises most of the genes, starting in

clpP intron 2 and ending with a part of ycf1 (fig. 2). The

LSC region has a length of 4,066 bp, and contains accD,

rps2, rps4, rps12 exon 1, rps18, trnE, trnfM, a part of trnQ

(the other part being at the end of the IRb, in clpP intron 2),

clpP exon 3, and a part of clpP intron 2. The small single copy

(SSC) region, of 1,190 bp, contains only a part of the ycf1

gene. The genes retained by Cynomorium are collinear with

those of Liquidambar except for two rearrangements in the

LSC, involving an inversion and displacement of rps14, and an

inversion and displacement of trnE together with rps2 (fig. 2).

Protein-coding genes of the plastome have an open read-

ing frame of at least 80% of the length of the same gene in

Liquidambar, except accD, rps18, ycf1, and ycf2, whose

lengths are between 53 and 77% of that of Liquidambar

(supplementary table S3, Supplementary Material online).

Cynomorium lost the intron maturase matK but retained

four genes containing introns, namely clpP with intron 1 be-

longing to group II B (gIIb) and intron 2 belonging to group II A

(gIIa), rpl2 with one gIIa intron, rpl16 with one gIIb intron, and

rps12, which retained one trans-spliced gIIb intron, but lost

the gIIa intron between exon 2 and exon 3 compared to

Liquidambar. The rRNA genes share between 75% and

92% identity with Liquidambar along a similar length except

for rrn4.5, which has a deletion of 10 bp. All five tRNAs are

able to form a clover-leaf secondary structure according to the

tRNAscan-SE webserver (http://lowelab.ucsc.edu/tRNAscan-

SE/, last accessed on March 29, 2016), although trnQ has a

mispairing in its acceptor stem (supplementary table S3,

Supplementary Material online).

An assembly of the Cynomorium mitochondrial genome

comprises 49 circular contigs, ranging between 10,804 and

32,985 bp for a total length of 1,106,389 bp. The contigs have

an average GC content of 44.3%, with little difference be-

tween coding and noncoding parts. The variation in read

depth despite the homogeneous GC content (table 2), as

well as our BLAST searches suggest that many parts of the

genome are duplicated, and that those repeats can lead to

various conformations (possibly also a master genome), de-

pending on the recombination between the circular subge-

nomes. The mitochondrial subgenomes of Cynomorium are

summarized in supplementary fig. S3 , Supplementary

Material online; altogether they contain the standard angio-

sperm mitochondrial gene set with conserved open reading

frames, except possibly sdh3. The main sdh3 sequence lacks a

start codon and contains a frameshift, but it may encode a

functional protein if its RNA is edited, which requires more

investigation.

Table 2

Read Depth and GC Content across the Different Genomic Compartments of Cynomorium from a Mapping Using all six Libraries and from a

Mapping Using Only the Mate-Pair (MP) Reads (see also supplementary fig. S1, Supplementary Material online)

Read Depth—

All Libraries

Read Depth—

MP Reads

GC Content

(%)

Genome Total Length

(bp)

Mean Median SD Mean Median SD Mean Median SD

Mitochondrial 1,106,389 2,772 2,827 665 169 167 51 44 44 8

Plastid 45,519 3,660 2,178 3,379 411 428 142 30 31 13

Nuclear (partial) 2,991,600 17 17.25 18.5 1.6 0 4 38 32 9

NOTE.—Read depth represents the per-base read depth over the whole length of all contigs (1 plastid, 49 mitochondrial, 182 nuclear), except for the first and last 100
bases, the coverage of which could be biased by the necessary stringency of the mapping; GC content was calculated using a sliding window size of 50 bp.
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Insights from Substitution Rates on the Genomic Location
of Genes

Figure 3 shows the root-to-tip branch length of Cynomorium

gene copies relative to those of other angiosperms included in

the trees. Average root to tip branch lengths are mostly>0.2

substitutions/site (subst./site) for nuclear genes,>0.1 subst./

site for the plastid genes of SC regions, and�0.05 subst./

site for those of the IR (fig. 3A and B), whereas they

are<0.1 (and mostly<0.05) subst./site for the mitochondrial

genes (fig. 3C). For all plastid and all nuclear genes, the

branches leading to Cynomorium (orange and green dia-

monds in fig. 3A and B) are longer than the average angio-

sperm branch length, which is not the case for many

mitochondrial genes (red diamonds in fig. 3C). Plastid and

mitochondrial gene copies that based on their read-depth

are located in the nuclear genome all have higher substitution

rates than those assumed to be located in the plastid or mi-

tochondrial genomes (compare orange diamonds and green

and red diamonds in fig. 3B and C). Similarly, plastid gene

copies assumed transferred into the mitochondrial genome

had a lower substitution rate than those located in the plas-

tome (red diamonds in fig. 3B). These results fit with the ex-

pected differences in substitution rate between the three

genomic compartments, indirectly supporting the accuracy

of our coverage-based assignments of the genes to the

Cynomorium genomic compartments.

Single Gene Trees and Evolutionary Placement Results
Are Congruent

ML searches most commonly placed Cynomorium in the

Saxifragales and—with mitochondrial genes—also the host

orders Caryophyllales and Sapindales (fig. 4A, supplementary

figs. S4–S6 and table S4, Supplementary Material online). The

evolutionary placement analyses, which assess the likelihood

of alternative phylogenetic placements, yielded the same re-

sults as the ML searches (fig. 4B and supplementary fig. S7,

Supplementary Material online). Single-gene trees are shown

in supplementary figures S4–S6 and table S4, Supplementary

Material online. In three plastid gene trees, our sequences (in

green) do not cluster with those amplified by Zhang et al.

(2009; in blue), which cluster with Rosales (see below),

while ours cluster with Saxifragales (rpl2 exon2, ycf2 with sup-

port) or the host order Fabales (rrn16, without support). In the

other 12 plastid gene trees, all plastid-located plastid genes

from this study (green) or others (blue) cluster with each other,

and Cynomorium is three times sister to Saxifragales (rpl2 exon
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1, rpl14 and rps3) and twice sister to Alismatales (rps11, rrn5);

other placements included Rosales (rrn23) and the host order

Caryophyllales (rrn4.5), always without support. Plastid gene

copies located in the mitochondrial (red) or nuclear (orange)

genomes mostly clustered with those located in the plastome,

but in a few cases, they clustered with the host orders

Asterales (a mitochondrial and six nuclear copies of rrn5,

and a nuclear copy of rpl2 exon 1), Caryophyllales (a mito-

chondrial copy of rps7 and a nuclear copy of rps11), Fabales (a

mitochondrial and a nuclear copy of rrn4.5), or Sapindales

(three nuclear copies of rrn4.5), always without support (sup-

plementary table S4 and fig. S4, Supplementary Material

online).

Mitochondrial gene copies located in the mitochondrial

genome clustered together in 29 out of 37 cases (supplemen-

tary table S4 and fig. S5, Supplementary Material online). The

exceptions are 1) atp6, where the three copies found clustered

with Apiales + Asterales or Cucurbitales, without support; 2)

atp8, where the three copies clustered with Caryophyllales or

Sapindales with>80% BS (supplementary table S4,

Supplementary Material online); 3) atp9 where one copy clus-

tered with Caryophyllales with>80% BS and one copy fell in

Fabales without support; 4) ccmB, where one copy fell in

Caryophyllales and another in Malvidae without support; 5)

cox2, where one copy placed as sister to asterids and

Caryophyllales without support whereas another grouped

with Caryophyllales with>80% BS; 6) cox3 where one copy

clustered in Caryophyllales with>90% BS and another in

Malvidae with>70% BS; 7) nad1 exon 5 where one copy

grouped with Caryophyllales and another with Gentianales

without support; and 8) rps3 where three Chinese and

Italian accessions grouped with Saxifragales with low support

whereas one Chinese sequence grouped with Caryophyllales

with>90% BS. In the remaining 29 gene trees,

Cynomoriaceae usually grouped with Saxifragales (ccmFc,

ccmFN when the long-branched Geraniales were removed

from the matrix, matR, mttB, and nad4; without support),

Brassicales (nad4L, rps14, and nad3 when the long-branched

Geraniales were removed), or Geraniales (atp4, ccmFN, and

nad3; without support and possibly resulting from long-

branch attraction). Other genes gave different placements,

notably rosids (nad7) and the host orders Asterales (rps12),

Caryophyllales (atp4 when the long-branched Geraniales

were removed, nad2, and rrn18—the latter with>70% BS),

Fabales (rrn5), or Sapindales (atp1 with>90% BS, nad1 exon

1, nad6, and rrn26 with>70% BS), most without strong

0.0

0.2

0.4

0.6

0.8

1.0

18
S

26
S

M
SH

1

pe
pC

ph
yA

SM
C

2

Nuclear Genes

R
oo

t-t
o-

tip
 le

ng
th

 (s
ub

st
itu

tio
ns

/s
ite

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cl
pP rp
l2

ex
on

 1

rp
l2

ex
on

 2

rp
l1

4

rp
l1

6

rp
l3

6

rp
s3

rp
s7

rp
s1

1

rp
s1

9

rr
n4

.5

rr
n5

rr
n1

6

rr
n2

3

yc
f2

Plastid Genes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

at
p1

at
p4

at
p6

at
p8

at
p9

cc
m

B

cc
m

C

cc
m

Fc

cc
m

FN co
b

co
x1

co
x2

co
x3

m
at

R

m
ttB

na
d1

na
d2

na
d3

na
d4

na
d4

L

na
d5

na
d6

na
d7

na
d9 rp
l5

rp
s3

rp
s1

2

rp
s1

4

rr
n5

rr
n1

8

rr
n2

6

sd
h3

sd
h4

Mitochondrial Genes

R
oo

t-t
o-

tip
 le

ng
th

 (s
ub

st
itu

tio
ns

/s
ite

)

A

C

B

FIG. 3.—Root to tip branch lengths of Cynomorium and other angiosperms in substitutions per site. Boxplots and open circles summarize the branch

length distribution of: (A) nuclear, (B) plastid, and (C) mitochondrial genes of photosynthetic plants obtained from the constrained phylogenies in supple-

mentary figures S3–S5, Supplementary Material online. Black line: median; boxes: upper and lower quartile, including 50% of the data; whiskers: minimum

and maximum of the data, provided that their length does not exceed 1.5� the interquartile range; open dots: outliers. Colored diamonds and circles

represent, respectively, the branch length of the genes and of their copies found in other genomic compartments of Cynomorium: orange: gene copy located

in the nuclear genome; green: gene copy located in the plastid genome; red: gene copy located in the mitochondrial genome; blue: gene copy amplified by

Garcia et al. (2004); circles: Cynomorium gene copies amplified by Zhang et al. (2009); diamonds: all other Cynomorium sequences.
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statistical support. Mitochondrial gene copies located in the

nuclear genome mostly clustered with those located in the

mitochondrial genome, but in a few cases, they placed some-

where else (supplementary table S4, Supplementary Material

online), especially in the host orders Asterales and/or

Caryophyllales (atp1, mttB, nad3, and nad9), and Sapindales

(three copies of atp9 and one copy of sdh4), usually without

support (supplementary table S4 and fig. S5, Supplementary

Material online).

The six nuclear genes sequenced from different

Cynomorium plants always clustered together (supplementary

fig. S6, Supplementary Material online) and usually grouped

with sequences from Saxifragales (18S, 26S, MSH1, and

SMC2, with between 70% and 100% BS; supplementary

table S4, Supplementary Material online).

Attempts to Reproduce a Placement of Cynomorium in
Rosales

Zhang et al. (2009) used primers designed by Dhingra and

Folta (2005) for functional chloroplast genomes to PCR-

amplify genes from the plastome IR of two Chinese

Cynomorium plants. We retrieved their sequences from

GenBank and included them in our trees where they fell in

two different orders depending on the gene: Rosales (rpl2

exon 2, and complete ycf2 and rrn16 genes) or Saxifragales

(rpl2 exon 1, rps7, rrn 4.5, rrn5, and rrn23; supplementary

table S4 and fig. S4, Supplementary Material online). Our

newly generated sequences of all these genes instead clus-

tered in Saxifragales, regardless of their geographic origin

(Chinese, Italian, or Iranian), genomic compartment (plastid,

mitochondrial, or nuclear copies), or sequencing method

(Sanger sequencing with our own primers or with those

used by Zhang et al., or Illumina shotgun sequencing).

Substitution rates of the copies amplified by Zhang et al.

(2009) are also outliers, depending on the gene: their

Rosales-like copies had a low substitution rate compared

with the higher rate of our Cynomorium copies and their

own Saxifragales-like copies (green circles in fig. 3B).

Unspecific amplification of Rosales DNA (either a contamina-

tion or a horizontally acquired DNA located in the nuclear or

mitochondrial genome) would explain these patterns. When

mapped against the Illumina data of the Italian Cynomorium,

the primers used by Zhang et al. (2009) to amplify ycf2 and

rrn16 do not match the Cynomorium plastome, neither does

the reverse primer used to obtain rpl2-exon 2, whereas the

primers used to amplify rps7, rrn 4.5, rrn5, and rrn23 do

match. The two primers amplifying rpl2-exon 1 match the

mitochondrial contig in which we also found a copy of this

exon. That Zhang et al. (2009) accidentally amplified this copy

is supported by the fact that their sequence and our mitochon-

drial copy cluster together in the tree (in Saxifragales with the

plastid copies; supplementary table S4 and fig. S4,

Supplementary Material online) and show the same unusually

low substitution rate instead of that of the native plastid-lo-

cated gene copies (green circles and red diamond in fig. 3B).

Phylogenetic reconstruction

0
2

4
6

8
10

12
14

A
pi

al
es

A
st

er
al

es
S

ol
an

al
es

G
en

tia
na

le
s

La
m

ia
le

s
M

al
pi

gh
ia

le
s

R
os

id
s

P
ro

te
al

es
Li

lia
le

s
A

st
er

id
s+

C
ar

yo
ph

yl
la

le
s

C
uc

ur
bi

ta
le

s
E

ric
al

es
E

ud
ic

ot
s

A
lis

m
at

al
es

M
al

vi
da

e
Fa

ba
le

s
V

ita
le

s
R

os
al

es
B

ra
ss

ic
al

es
S

ap
in

da
le

s
C

ar
yo

ph
yl

la
le

s
S

ax
ifr

ag
al

es
A

pi
al

es
A

st
er

al
es

A
st

er
id

s+
C

ar
yo

ph
yl

la
le

s
C

uc
ur

bi
ta

le
s

E
ric

al
es

E
ud

ic
ot

s
G

en
tia

na
le

s
M

al
pi

gh
ia

le
s

M
al

vi
da

e
R

os
id

s
S

ap
in

da
le

s
V

ita
le

s
S

ol
an

al
es

B
ra

ss
ic

al
es

La
m

ia
le

s
Fa

ba
le

s
C

ar
yo

ph
yl

la
le

s
P

ro
te

al
es

Li
lia

le
s

A
lis

m
at

al
es

R
os

al
es

S
ax

ifr
ag

al
es

R
os

al
es

S
ol

an
al

es
La

m
ia

le
s

P
ro

te
al

es
A

lis
m

at
al

es
Li

lia
le

s
A

pi
al

es
A

st
er

al
es

G
en

tia
na

le
s

M
al

pi
gh

ia
le

s
R

os
id

s
V

ita
le

s
A

st
er

id
s+

C
ar

yo
ph

yl
la

le
s

C
uc

ur
bi

ta
le

s
E

ric
al

es
E

ud
ic

ot
s

Fa
ba

le
s

B
ra

ss
ic

al
es

M
al

vi
da

e
S

ap
in

da
le

s
S

ax
ifr

ag
al

es
C

ar
yo

ph
yl

la
le

s
R

os
al

es
A

pi
al

es
A

st
er

al
es

A
st

er
id

s+
C

ar
yo

ph
yl

la
le

s
S

ol
an

al
es

B
ra

ss
ic

al
es

C
uc

ur
bi

ta
le

s
E

ric
al

es
E

ud
ic

ot
s

G
en

tia
na

le
s

La
m

ia
le

s
M

al
pi

gh
ia

le
s

M
al

vi
da

e
R

os
id

s
Fa

ba
le

s
C

ar
yo

ph
yl

la
le

s
S

ap
in

da
le

s
P

ro
te

al
es

A
lis

m
at

al
es

Li
lia

le
s

V
ita

le
s

S
ax

ifr
ag

al
es

Total
Plastid

genes (14)
Mitochondrial

genes (33)
Nuclear

genes (6)

Apiales
Asterales
Solanales
Gentianales
Lamiales
Malpighiales
Rosids
Proteales
Liliales
Asterids+Caryophyllales
Cucurbitales
Ericales
Eudicots
Alismatales
Malvidae
Fabales
Vitales
Rosales
Brassicales
Sapindales
Caryophyllales
SaxifragalesS

um
 o

f p
la

ce
m

en
ts

**

A Evolutionary placement

0
5

10
15

20
25

30

Li
lia

le
s

A
lis

m
at

al
es

M
al

va
le

s
S

ol
an

al
es

G
er

an
ia

le
s

P
ro

te
al

es
A

pi
al

es
C

uc
ur

bi
ta

le
s

Fa
ba

le
s

M
al

pi
gh

ia
le

s
A

st
er

al
es

G
en

tia
na

le
s

M
yr

ta
le

s
V

ita
le

s
E

ric
al

es
R

os
al

es
La

m
ia

le
s

B
ra

ss
ic

al
es

C
ar

yo
ph

yl
la

le
s

S
ap

in
da

le
s

S
ax

ifr
ag

al
es

Fa
ba

le
s

G
er

an
ia

le
s

M
al

va
le

s
Li

lia
le

s
V

ita
le

s
M

al
pi

gh
ia

le
s

A
lis

m
at

al
es

A
pi

al
es

S
ol

an
al

es
C

uc
ur

bi
ta

le
s

P
ro

te
al

es
S

ap
in

da
le

s
A

st
er

al
es

G
en

tia
na

le
s

C
ar

yo
ph

yl
la

le
s

B
ra

ss
ic

al
es

E
ric

al
es

M
yr

ta
le

s
R

os
al

es
La

m
ia

le
s

S
ax

ifr
ag

al
es

M
yr

ta
le

s
A

lis
m

at
al

es
Li

lia
le

s
P

ro
te

al
es

La
m

ia
le

s
R

os
al

es
S

ol
an

al
es

M
al

va
le

s
A

pi
al

es
C

uc
ur

bi
ta

le
s

G
en

tia
na

le
s

A
st

er
al

es
E

ric
al

es
G

er
an

ia
le

s
M

al
pi

gh
ia

le
s

V
ita

le
s

Fa
ba

le
s

B
ra

ss
ic

al
es

C
ar

yo
ph

yl
la

le
s

S
ax

ifr
ag

al
es

S
ap

in
da

le
s

G
en

tia
na

le
s

M
yr

ta
le

s
A

lis
m

at
al

es
Fa

ba
le

s
M

al
pi

gh
ia

le
s

Li
lia

le
s

E
ric

al
es

R
os

al
es

B
ra

ss
ic

al
es

A
st

er
al

es
C

ar
yo

ph
yl

la
le

s
M

al
va

le
s

A
pi

al
es

S
ap

in
da

le
s

La
m

ia
le

s
G

er
an

ia
le

s
P

ro
te

al
es

S
ol

an
al

es
C

uc
ur

bi
ta

le
s

V
ita

le
s

S
ax

ifr
ag

al
es

Total
Plastid

genes (14)
Mitochondrial

genes (33)
Nuclear

genes (6)

Liliales
Alismatales
Malvales
Solanales
Geraniales
Proteales
Apiales
Cucurbitales
Fabales
Malpighiales
Asterales
Gentianales
Myrtales
Vitales
Ericales
Rosales
Lamiales
Brassicales
Caryophyllales
Sapindales
Saxifragales

*

S
um

 o
f p

ro
ba

bi
lit

ie
s

B

FIG. 4.— Bar plots summarizing the analyses of single gene matrices when the rest of the topology was constrained to fit the currently accepted

angiosperm relationships (Angiosperm Phylogeny Group 2016). For simplicity, internally transferred gene copies were not included but their placements can

be seen in supplementary figures S4–S6, Supplementary Material online. (A) Results of ML tree searches. For each clade, the number of genes that placed

Cynomorium sequence(s) in the respective clade is shown (details in supplementary figs. S4–S6 and table S4, Supplementary Material online). (B) Results of

evolutionary placement analyses (Materials and Methods). For each clade, the sum of the probabilities across all genes that placed Cynomorium in the

respective clade is shown (details in supplementary fig. S7, Supplementary Material online). For both analyses, results are shown overall and by genomic

compartment. The asterisks indicate placements resulting exclusively from the sequences of Zhang et al. (2009). Numbers of markers for each compartment

are indicated in brackets.
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Results from Concatenated Data

The concatenated plastid and nuclear matrices with or with-

out unlinked data partitions yielded topologies that fit with the

topology accepted by Angiosperm Phylogeny Group (2016),

except for the position of magnoliids (without BS; figs. 5 and

6). The concatenated mitochondrial matrix yielded a topology

that did not match accepted angiosperm relationships due to

lack of signal (fig. 3), and we therefore constrained this topol-

ogy (Materials and Methods). In the plastid tree (fig. 5A),

Cynomorium plants newly sequenced for this study as well

as previously sequenced plants from Spain (voucher Nickrent

4063), Israel (Nickrent 4000), and China (concatenated rps7,

rpl2 exon 1 rrn4.5, rrn5, and rrn23 from Zhang et al. 2009) fell

in Saxifragales (with 99% BS), specifically as sister to

Crassulaceae and Penthoraceae (without statistical support).

Zhang et al. (2009) rpl2 exon 2, rrn16, and ycf2 sequences

instead grouped with Rosaceae (with 100% BS). Sequences

from plants from Israel, Italy, and Spain form a well-supported

clade nested in a grade of Chinese accessions, with the most

basal being the accessions from Zhang et al. (2009; fig. 5A). In

the nuclear tree (fig. 5B), Cynomorium is sister to Saxifragales

with 75% BS, with the Spanish and Italian sequences closer to

each other than to the Chinese sequences. In the mitochon-

drial tree obtained with a partitioned model (fig. 6), the main

Cynomorium clade is sister to Heuchera (Saxifragales), but

without support, whereas it is sister to rosids in the unparti-

tioned analysis, also without support (not shown). The single-

gene sequences that were outliers compared with the majority

of the mitochondrial genes (see previous section) clus-

tered with the host clades Caryophyllales (Italian atp8, atp9,

ccmB, cox2, cox3, and nad1 exon 5, Chinese rps3) or

Sapindales (Italian atp1, atp8 and rrn26), or had “intermedi-

ate” placements (ccmB, cox3, rrn18). Different copies of

atp6 cluster either with Cucurbitales or Asterales. Removing

those sequences did not change the position of the

main Cynomorium clade and failed to increase BS (data not

shown).

Geography and Genetic Variation within Cynomoriaceae

Figure 7 shows a neighbor net from four plastid protein-

coding genes and the plastid 23S rDNA together with the

water-stressed, often saline habitats in which the sequenced

plants were growing on the hosts shown in the photos. The

network reflects the geographical distribution of the sampled

populations and is completely tree-like because there is no

internal contradiction (no homoplasy) in the data. The great

genetic distinctness of the single Spanish sequence is

surprising.

Discussion

The Mitochondrial and Plastid Genomes of Cynomorium

The Cynomorium mitochondrial genome is only the fourth of

any parasitic plant to have been assembled, following the

partial genome of Rafflesia lagascae (Xi et al. 2013) and the

complete ones of Viscum album and Viscum scurruloideum

(Petersen et al. 2015, Skippington et al. 2015). The organiza-

tion of the mitochondrial genome of Cynomorium in many

sublimons is similar to that found in Silene (Sloan et al. 2012)

and V. scurruloideum, with many repeated regions facilitating

recombination of the genome and thereby leading to many

sublimons. The size and gene content of the chondriome of

Cynomorium (and of R. lagascae) are comparable to that of

other angiosperms, while the chondriomes of Viscum have

unexpectedly lost all genes from the respiration complex I

(nad genes). Different from Viscum, and to a lesser extent
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FIG. 5.— Phylogenetic trees obtained from ML analyses of the concatenated plastid (A) and nuclear (B) genes. Major angiosperm taxa are labeled

following Angiosperm Phylogeny Group (2016), with the orders including Cynomorium in purple (Saxifragales) and red (Fabids), and shown in more detail on

the right.
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FIG. 6.— Phylogenetic tree obtained from ML analyses of the concatenated mitochondrial gene matrix. The genus label Cynomorium on the right refers to

the placement of 26 genes from the Italian plant. The colored dots mark multiple copies of the respective gene; the two yellow diamonds mark a gene acquired

by HGT, of which one native copy was included in the concatenated matrix; the single yellow square marks the rps3 of a Chinese accession (see text).
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Rafflesia, the substitution rates of Cynomorium mitochondrial

genes are of the same order as those of other angiosperms

(fig. 3C), making it easier to identify ancient HGT events in this

lineage (below).

The Cynomorium plastome appears to be circular, and our

assembly is probably complete because PCR products of the

LSC and SSC are of the expected size, and Sanger sequencing

and/or Illumina reads confirmed the IR junctions and

the low-coverage region in the LSC region. It contains 27 of

the typically 116 angiosperm plastome genes and presents the

quadripartite structure observed in many photosynthetic an-

giosperms, albeit with a very small SC region containing only a

piece of ycf1. In gene content, it is similar to the plastome of

Hydnora, another ancient exoholoparasite (Naumann et al.

2013, 2016: about 100 Myr). The 24 genes of the Hydnora

plastome are all found in Cynomorium, which in addition re-

tains clpP, trnH, and trnQ, of which trnQ may be a pseudo-

gene. A few genes of Cynomorium are very different in length

and identity from the outgroup Liquidambar (supplementary

table S3, Supplementary Material online), among them accD,

which is essential for fatty-acid biosynthesis (Kode et al. 2005)

and has the five C-terminal domains shown to be conserved in

all known accD sequences (Lee et al. 2004) so that it is prob-

ably still functional. The ycf1 and ycf2 genes are also shorter in

Cynomorium than in Liquidambar (supplementary table S3,

Supplementary Material online), but still have large ORFs of

1,273 and 1,761 amino acids, so they could be functional.

Length and structure of at least ycf1 are known to vary a lot

across land plants (deVries et al. 2015). Their function remains

unclear (deVries et al. 2015; Nakai 2015), and they are absent

from Poales (Wicke et al. 2011) and the non-photosynthetic

Sciaphila (Schelkunov et al. 2015), Epipogium (Lam et al.

2015), and Pilostyles (Bellot and Renner 2016). In Hydnora,

however, they are expressed (Naumann et al. 2016). Finally,

although only half of rps18 of Liquidambar can be aligned to

Cynomorium, both lineages conserve the most characteristic

domain of this protein.

Four genes contain introns and thus depend on functional

splicing machinery, which could present a problem because

Cynomorium lost the plastid-encoded maturase matK.

However, clpP intron 2, which belongs to group II A, and

most of the other introns, which belong to group II B, rely

on nuclear-encoded splicing factors (Zoschke et al. 2010;

Germain et al. 2013). Only rpl2, which normally depends on

matK to splice its group II A intron, may be pseudogenized

despite its conserved exons. Interestingly, in Hydnora visseri

where matK has also been lost, rpl2 is conserved but does

not rely on matK because it lost its intron. In Hydnora long-

icollis, however, rpl2 is transcribed but is likely a pseudogene

(Naumann et al. 2016). A functional loss of rpl2 in

Cynomorium would reduce to 16 the minimal set of genes

encountered in all exoholoparasites so far examined. The high

stem age of Cynomorium and Hydnora and the conservation

of 24–27 genes, most of them functional, in their otherwise

reduced plastomes contrast with the absent or extremely re-

duced plastomes of the younger or equally old endoparasites

Pilostyles and Rafflesia (Molina et al. 2014; Bellot and Renner

2016), and supports a hypothesized difference in plastome

Iran, on SalsolaSardinia, Italy, on Atriplex

Spain, host unknown

0.0020

China, on NitrariaNingxia accession

Gansu accession

FIG. 7.— Neighbor net obtained from variable plastid regions of Cynomorium from Spain (Nickrent 4063), Italy (N. Cusimano and C. Cusimano 2), Iran

(S. Zarre 59621), and China (L. Zhang 1 and S.X. Luo 618). The photos show habitats and hosts of Cynomorium at our collecting sites. The host of the Spanish

sample is unknown. Photos by N. Cusimano (Italy and Atriplex), S.X. Luo (China and Nitraria), and A. Gröger (Iran and Salsola).
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function between endo- and exoparasites because the former

never have free-living stems.

More generally, the existence of a few plastome genes in

Cynomorium and Hydnora that are lost idiosyncratically in

other exoparasites (accD, rps2, rps18, rps19, ycf1, ycf2), as

well as the retention of clpP and trnH in Cynomorium but

not Hydnora, implies either random events or not yet under-

stood lineage-specific selection.

Cynomorium Belongs in Saxifragales and Other Ordinal
Placements Are Due to HGTs or Contamination

With sequence data from all three genomic compartments

(and from plants representing the family’s range), our study

firmly resolves the phylogenetic position of one of the last

unplaced angiosperm families (Stevens 2001 onwards;

Angiosperm Phylogeny Group 2009, 2016). That

Cynomoriaceae belong in the Saxifragales notably was in-

ferred by Nickrent et al. (2005) a full 10 years ago, based on

nuclear 18S and 26S rDNA and the mitochondrial matR from a

single plant (Nickrent 4063 from Spain). The precise place-

ment of Cynomoriaceae within Saxifragales requires denser

taxon sampling; Saxifragales comprise 15 families (counting

Cynomoriaceae), 117–120 genera, and approximately 2,500

species. Only one of the 55 genes (or their additional copies)

obtained from our material placed Cynomorium inside Rosales

(rrn23,<70% BS), and we suspect that the Rosales place-

ments of the copies of Zhang et al. (2009) were due to se-

quences obtained with primers designed for functional

plastomes, which did not bind to the highly degenerated

Cynomorium plastome but instead to contaminant DNA

(Results).

We find evidence of HGT, involving both interspecific trans-

fers of mitochondrial genes from host plants into the mito-

chondrial and the nuclear genomes of Cynomorium, and

intracellular transfers of mitochondrial and plastid genes into

the nuclear genome. Therefore, we agree with Barkman et al.

(2007) interpretation that HGTs from hosts, most likely

Nitrariaceae, are the explanation of the grouping in

Sapindales obtained from the mitochondrial atp1 and cox1

(including intron) sequences, and we extend this interpreta-

tion to the placements of ten other gene copies in Sapindales

(two copies of atp8, rrn26) and the other host order

Caryophyllales (atp8, atp9, ccmB, cox2, cox3, nad1 exon 5,

rps3). To complicate the picture, some of those genes may

have been acquired multiple times from the same or different

hosts (e.g., atp8 from Caryophyllales and Sapindales; supple-

mentary table S4, Supplementary Material online, fig. 6).

Surprisingly, we could not find native, non-host-like copies

of atp1 and atp8, indicating that host copies of these genes

may have replaced the native homologs. Other unexpected

phylogenetic placements could be the result of old transfers

from unknown or rare hosts such as Asterales (e.g., atp6; fig.

6), which would further blur phylogenetic reconstructions

based on mitochondrial genes.

The inferred extent of HGT places Cynomorium intermedi-

ate between the mistletoe V. scurruloideum, in which only the

cox1 intron appears horizontally transferred (Skippington et al.

2015), and Rafflesia, which acquired numerous genes from its

host (Tetrastigma, Vitales) or also from unknown past hosts (Xi

et al. 2013). Differences in the extent of HGT could be due to

the age of a parasitism in a lineage and possibly the type of

parasitism: Endoparasites, such as Rafflesia, may be more

prone to HGT than exoparasites, such as Viscum and

Cynomorium.

Genome Size, Chromosome Numbers, and Geographic
History of Cynomorium

The only chromosome count for Cynomorium, obtained from

pollen mother cells of a plant parasitizing Tamarix tetragyna

Ehrenb. in the lower Jordan Valley, is n = 14, and the karyo-

type is bimodal (Pazy et al. 1996). For Saxifragales, genome

sizes are known for 78 of their 2,500 species, representing

8 of their 15 families with the 1C values of Cercidiphyllaceae,

Daphniphyllaceae, Grossulariaceae, Haloragaceae,

Hamamelidaceae, and Saxifragaceae all�2.38 pg (Bennett

and Leitch 2012). The Cynomoriaceae genomes measured

here have 1C values of approximately 13 pg, similar to those

of Crassulaceae and Paeoniaceae (with the single genus

Paeonia), which have genome sizes of 9.1 and 12.05–

30.5 pg (Bennett and Leitch 2012).

The Cynomorium neighbor net (fig. 7) illustrates the con-

siderable genetic distances within this lineage, as is expected

from populations growing as far apart as Spain, Italy, Iran, and

the Mongolian deserts in China (fig. 1). Cynomoriaceae are

among the 60 or so seed plant families endemic to the

Holarctic (Takhtajan 1986), and Takhtajan considered their

single genus (Cynomorium) a floristic element of the Tethyan

(ancient Mediterranean) subkingdom and the modern

Mediterranean region, while stressing that the eastern bound-

ary of the Mediterranean region and its separation from the

Irano-Turanian region are difficult to define. This is because

the Tethyan flora developed primarily by migration, and the

majority of this flora has boreal and eastern Asian origins

(Takhtajan 1986; Manafzadeh et al. 2013). The Irano-

Turanian region includes the Zagros and Alborz mountain

ranges of the Iranian plateau, which arose synchronously

during the mid-Miocene (references in Manafzadeh et al.

2013) and which are part of the Alpine–Himalayan mountain

system. Many molecular-biogeographic studies over the past

15 years have inferred east to west expansion of plant lineages

from the western Chinese interior towards the Mediterranean

(e.g., Zhang et al. 2015 for Nitraria), and Cynomorium may

also have expanded from the Mongolian deserts to

Afghanistan and Iran as the Tethys closed and the Arabian

Peninsula connected with Eurasia; this would explain the

Bellot et al. GBE

2228 Genome Biol. Evol. 8(7):2214–2230. doi:10.1093/gbe/evw147 Advance Access publication June 29, 2016

Deleted Text: -
Deleted Text: <italic>b</italic>
Deleted Text: <italic>o</italic>
Deleted Text: <italic>o</italic>
Deleted Text: <italic>p</italic>
Deleted Text: <italic>a</italic>
Deleted Text: <italic>d</italic>
Deleted Text: <italic>h</italic>
Deleted Text: <italic>H</italic>
Deleted Text: <italic>orizontal g</italic>
Deleted Text: <italic>G</italic>
Deleted Text: <italic>ene t</italic>
Deleted Text: <italic>T</italic>
Deleted Text: <italic>ransfer</italic>
Deleted Text: <italic>c</italic>
Deleted Text: ; 
Deleted Text: APG IV, 
Deleted Text: ten 
Deleted Text: -
Deleted Text: ca.
Deleted Text: horizontal gene transfer (
Deleted Text: )
Deleted Text: 10 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw147/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw147/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw147/-/DC1
Deleted Text: F
Deleted Text: F
Deleted Text: <italic>Viscum</italic> 
Deleted Text: -
Deleted Text: <italic>s</italic>
Deleted Text: <italic>c</italic>
Deleted Text: <italic>n</italic>
Deleted Text: <italic>g</italic>
Deleted Text: <italic>h</italic>
Deleted Text: ca.
Deleted Text:  to 
Deleted Text: F
Deleted Text: F


nesting of Iranian and Italian sequences among Chinese ones

in the mitochondrial phylogeny (fig. 6). Using the mitochon-

drial matR sequence of Barkman et al. (EU281095; which cor-

rectly placed Cynomorium in Saxifragales, but comes from an

unknown collecting site), Naumann et al. (2013) estimated the

stem age of Cynomoriaceae as 100 Myr, with a 95% confi-

dence interval of 76–117 Ma. We here refrain from applying a

clock-model within Cynomorium, but judging from the

within-genus genetic distances (fig. 7 and supplementary

fig. S5, Supplementary Material online), our sampled popula-

tions have been separated for many million years.

Supplementary Material

Supplementary figures S1–S7 and tables S1–S4 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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