203 research outputs found

    Efficient unimodality test in clustering by signature testing

    Full text link
    This paper provides a new unimodality test with application in hierarchical clustering methods. The proposed method denoted by signature test (Sigtest), transforms the data based on its statistics. The transformed data has much smaller variation compared to the original data and can be evaluated in a simple proposed unimodality test. Compared with the existing unimodality tests, Sigtest is more accurate in detecting the overlapped clusters and has a much less computational complexity. Simulation results demonstrate the efficiency of this statistic test for both real and synthetic data sets

    Nonlinear Models Using Dirichlet Process Mixtures

    Full text link
    We introduce a new nonlinear model for classification, in which we model the joint distribution of response variable, y, and covariates, x, non-parametrically using Dirichlet process mixtures. We keep the relationship between y and x linear within each component of the mixture. The overall relationship becomes nonlinear if the mixture contains more than one component. We use simulated data to compare the performance of this new approach to a simple multinomial logit (MNL) model, an MNL model with quadratic terms, and a decision tree model. We also evaluate our approach on a protein fold classification problem, and find that our model provides substantial improvement over previous methods, which were based on Neural Networks (NN) and Support Vector Machines (SVM). Folding classes of protein have a hierarchical structure. We extend our method to classification problems where a class hierarchy is available. We find that using the prior information regarding the hierarchical structure of protein folds can result in higher predictive accuracy

    Improving Classification When a Class Hierarchy is Available Using a Hierarchy-Based Prior

    Full text link
    We introduce a new method for building classification models when we have prior knowledge of how the classes can be arranged in a hierarchy, based on how easily they can be distinguished. The new method uses a Bayesian form of the multinomial logit (MNL, a.k.a. ``softmax'') model, with a prior that introduces correlations between the parameters for classes that are nearby in the tree. We compare the performance on simulated data of the new method, the ordinary MNL model, and a model that uses the hierarchy in different way. We also test the new method on a document labelling problem, and find that it performs better than the other methods, particularly when the amount of training data is small

    Modeling Binary Time Series Using Gaussian Processes with Application to Predicting Sleep States

    Full text link
    Motivated by the problem of predicting sleep states, we develop a mixed effects model for binary time series with a stochastic component represented by a Gaussian process. The fixed component captures the effects of covariates on the binary-valued response. The Gaussian process captures the residual variations in the binary response that are not explained by covariates and past realizations. We develop a frequentist modeling framework that provides efficient inference and more accurate predictions. Results demonstrate the advantages of improved prediction rates over existing approaches such as logistic regression, generalized additive mixed model, models for ordinal data, gradient boosting, decision tree and random forest. Using our proposed model, we show that previous sleep state and heart rates are significant predictors for future sleep states. Simulation studies also show that our proposed method is promising and robust. To handle computational complexity, we utilize Laplace approximation, golden section search and successive parabolic interpolation. With this paper, we also submit an R-package (HIBITS) that implements the proposed procedure.Comment: Journal of Classification (2018

    Wormhole Hamiltonian Monte Carlo

    Full text link
    In machine learning and statistics, probabilistic inference involving multimodal distributions is quite difficult. This is especially true in high dimensional problems, where most existing algorithms cannot easily move from one mode to another. To address this issue, we propose a novel Bayesian inference approach based on Markov Chain Monte Carlo. Our method can effectively sample from multimodal distributions, especially when the dimension is high and the modes are isolated. To this end, it exploits and modifies the Riemannian geometric properties of the target distribution to create \emph{wormholes} connecting modes in order to facilitate moving between them. Further, our proposed method uses the regeneration technique in order to adapt the algorithm by identifying new modes and updating the network of wormholes without affecting the stationary distribution. To find new modes, as opposed to rediscovering those previously identified, we employ a novel mode searching algorithm that explores a \emph{residual energy} function obtained by subtracting an approximate Gaussian mixture density (based on previously discovered modes) from the target density function

    Spherical Hamiltonian Monte Carlo for Constrained Target Distributions

    Full text link
    We propose a new Markov Chain Monte Carlo (MCMC) method for constrained target distributions. Our method first maps the DD-dimensional constrained domain of parameters to the unit ball B0D(1){\bf B}_0^D(1). Then, it augments the resulting parameter space to the DD-dimensional sphere, SD{\bf S}^D. The boundary of B0D(1){\bf B}_0^D(1) corresponds to the equator of SD{\bf S}^D. This change of domains enables us to implicitly handle the original constraints because while the sampler moves freely on the sphere, it proposes states that are within the constraints imposed on the original parameter space. To improve the computational efficiency of our algorithm, we split the Lagrangian dynamics into several parts such that a part of the dynamics can be handled analytically by finding the geodesic flow on the sphere. We apply our method to several examples including truncated Gaussian, Bayesian Lasso, Bayesian bridge regression, and a copula model for identifying synchrony among multiple neurons. Our results show that the proposed method can provide a natural and efficient framework for handling several types of constraints on target distributions

    Variational Hamiltonian Monte Carlo via Score Matching

    Full text link
    Traditionally, the field of computational Bayesian statistics has been divided into two main subfields: variational methods and Markov chain Monte Carlo (MCMC). In recent years, however, several methods have been proposed based on combining variational Bayesian inference and MCMC simulation in order to improve their overall accuracy and computational efficiency. This marriage of fast evaluation and flexible approximation provides a promising means of designing scalable Bayesian inference methods. In this paper, we explore the possibility of incorporating variational approximation into a state-of-the-art MCMC method, Hamiltonian Monte Carlo (HMC), to reduce the required gradient computation in the simulation of Hamiltonian flow, which is the bottleneck for many applications of HMC in big data problems. To this end, we use a {\it free-form} approximation induced by a fast and flexible surrogate function based on single-hidden layer feedforward neural networks. The surrogate provides sufficiently accurate approximation while allowing for fast exploration of parameter space, resulting in an efficient approximate inference algorithm. We demonstrate the advantages of our method on both synthetic and real data problems

    Hamiltonian Monte Carlo Acceleration Using Surrogate Functions with Random Bases

    Full text link
    For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov Chain Monte Carlo (MCMC) methods, namely, Hamiltonian Monte Carlo (HMC). The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the art methods
    • …
    corecore