341 research outputs found

    A Global Approach for Solving Edge-Matching Puzzles

    Full text link
    We consider apictorial edge-matching puzzles, in which the goal is to arrange a collection of puzzle pieces with colored edges so that the colors match along the edges of adjacent pieces. We devise an algebraic representation for this problem and provide conditions under which it exactly characterizes a puzzle. Using the new representation, we recast the combinatorial, discrete problem of solving puzzles as a global, polynomial system of equations with continuous variables. We further propose new algorithms for generating approximate solutions to the continuous problem by solving a sequence of convex relaxations

    Empirical approximation of the gaussian distribution in Rd\mathbb{R}^d

    Full text link
    Let G1,,GmG_1,\dots,G_m be independent copies of the standard gaussian random vector in Rd\mathbb{R}^d. We show that there is an absolute constant cc such that for any ASd1A \subset S^{d-1}, with probability at least 12exp(cΔm)1-2\exp(-c\Delta m), for every tRt\in\mathbb{R}, supxA1mi=1m1{Gi,xt}P(G,xt)Δ+σ(t)Δ. \sup_{x \in A} \left| \frac{1}{m}\sum_{i=1}^m 1_{ \{\langle G_i,x\rangle \leq t \}} - \mathbb{P}(\langle G,x\rangle \leq t) \right| \leq \Delta + \sigma(t) \sqrt\Delta. Here σ(t)\sigma(t) is the variance of 1{G,xt}1_{\{\langle G,x\rangle\leq t\}} and ΔΔ0\Delta\geq \Delta_0, where Δ0\Delta_0 is determined by an unexpected complexity parameter of AA that captures the set's geometry (Talagrand's γ1\gamma_1 functional). The bound, the probability estimate, and the value of Δ0\Delta_0 are all (almost) optimal. We use this fact to show that if Γ=i=1mGi,xei\Gamma=\sum_{i=1}^m \langle G_i,x\rangle e_i is the random matrix that has G1,,GmG_1,\dots,G_m as its rows, then the structure of Γ(A)={Γx:xA}\Gamma(A)=\{\Gamma x: x\in A\} is far more rigid and well-prescribed than was previously expected

    A Deep Hierarchical Approach to Lifelong Learning in Minecraft

    Full text link
    We propose a lifelong learning system that has the ability to reuse and transfer knowledge from one task to another while efficiently retaining the previously learned knowledge-base. Knowledge is transferred by learning reusable skills to solve tasks in Minecraft, a popular video game which is an unsolved and high-dimensional lifelong learning problem. These reusable skills, which we refer to as Deep Skill Networks, are then incorporated into our novel Hierarchical Deep Reinforcement Learning Network (H-DRLN) architecture using two techniques: (1) a deep skill array and (2) skill distillation, our novel variation of policy distillation (Rusu et. al. 2015) for learning skills. Skill distillation enables the HDRLN to efficiently retain knowledge and therefore scale in lifelong learning, by accumulating knowledge and encapsulating multiple reusable skills into a single distilled network. The H-DRLN exhibits superior performance and lower learning sample complexity compared to the regular Deep Q Network (Mnih et. al. 2015) in sub-domains of Minecraft

    Osmolytes Control Peptide Folding and Aggregation

    Get PDF

    DropCompute: simple and more robust distributed synchronous training via compute variance reduction

    Full text link
    Background: Distributed training is essential for large scale training of deep neural networks (DNNs). The dominant methods for large scale DNN training are synchronous (e.g. All-Reduce), but these require waiting for all workers in each step. Thus, these methods are limited by the delays caused by straggling workers. Results: We study a typical scenario in which workers are straggling due to variability in compute time. We find an analytical relation between compute time properties and scalability limitations, caused by such straggling workers. With these findings, we propose a simple yet effective decentralized method to reduce the variation among workers and thus improve the robustness of synchronous training. This method can be integrated with the widely used All-Reduce. Our findings are validated on large-scale training tasks using 200 Gaudi Accelerators.Comment: https://github.com/paper-submissions/dropcomput

    MTJ-Based Hardware Synapse Design for Quantized Deep Neural Networks

    Full text link
    Quantized neural networks (QNNs) are being actively researched as a solution for the computational complexity and memory intensity of deep neural networks. This has sparked efforts to develop algorithms that support both inference and training with quantized weight and activation values without sacrificing accuracy. A recent example is the GXNOR framework for stochastic training of ternary and binary neural networks. In this paper, we introduce a novel hardware synapse circuit that uses magnetic tunnel junction (MTJ) devices to support the GXNOR training. Our solution enables processing near memory (PNM) of QNNs, therefore can further reduce the data movements from and into the memory. We simulated MTJ-based stochastic training of a TNN over the MNIST and SVHN datasets and achieved an accuracy of 98.61% and 93.99%, respectively

    The Drosophila Gene CheB42a Is a Novel Modifier of Deg/ENaC Channel Function

    Get PDF
    Degenerin/epithelial Na+ channels (DEG/ENaC) represent a diverse family of voltage-insensitive cation channels whose functions include Na+ transport across epithelia, mechanosensation, nociception, salt sensing, modification of neurotransmission, and detecting the neurotransmitter FMRFamide. We previously showed that the Drosophila melanogaster Deg/ENaC gene lounge lizard (llz) is co-transcribed in an operon-like locus with another gene of unknown function, CheB42a. Because operons often encode proteins in the same biochemical or physiological pathway, we hypothesized that CHEB42A and LLZ might function together. Consistent with this hypothesis, we found both genes expressed in cells previously implicated in sensory functions during male courtship. Furthermore, when coexpressed, LLZ coprecipitated with CHEB42A, suggesting that the two proteins form a complex. Although LLZ expressed either alone or with CHEB42A did not generate ion channel currents, CHEB42A increased current amplitude of another DEG/ENaC protein whose ligand (protons) is known, acid-sensing ion channel 1a (ASIC1a). We also found that CHEB42A was cleaved to generate a secreted protein, suggesting that CHEB42A may play an important role in the extracellular space. These data suggest that CHEB42A is a modulatory subunit for sensory-related Deg/ENaC signaling. These results are consistent with operon-like transcription of CheB42a and llz and explain the similar contributions of these genes to courtship behavior
    corecore