401 research outputs found
Metallurgical Pilot Plants
In this presentation, a brief review is made of the
theory and practice of piloting industrial prototypes and attention is particularly focussed on methods of scale-up and their usefulness in equipment and plant design.
There exist prolific references in the literature on
general Pilot Plant engineering and Scale-up Fundamentals. What may be considered a 'Bible' on the subject is a recent volume by R.E. Johnstone and M.W. Thring on "Pilot Plants, Models, and Scale-up Methods in Chemical Engin-eering"
Using Functional Near Infrared Spectroscopy (fNIRS) to study dynamic stereoscopic depth perception
The parietal cortex has been widely implicated in the processing of depth perception by many neuroimaging studies, yet functional near infrared spectroscopy (fNIRS) has been an under-utilised tool to examine the relationship of oxy- ([HbO]) and de-oxyhaemoglobin ([HbR]) in perception. Here we examine the haemodynamic response (HDR) to the processing of induced depth stimulation using dynamic random-dot-stereograms (RDS). We used fNIRS to measure the HDR associated with depth perception in healthy young adults (n = 13, mean age 24). Using a blocked design, absolute values of [HbO] and [HbR] were recorded across parieto-occipital and occipital cortices, in response to dynamic RDS. Control and test images were identical except for the horizontal shift in pixels in the RDS that resulted in binocular disparity and induced the percept of a 3D sine wave that 'popped out' of the test stimulus. The control stimulus had zero disparity and induced a 'flat' percept. All participants had stereoacuity within normal clinical limits and successfully perceived the depth in the dynamic RDS. Results showed a significant effect of this complex visual stimulation in the right parieto-occipital cortex (p < 0.01, η(2) = 0.54). The test stimulus elicited a significant increase in [HbO] during depth perception compared to the control image (p < 0.001, 99.99 % CI [0.008-0.294]). The similarity between the two stimuli may have resulted in the HDR of the occipital cortex showing no significant increase or decrease of cerebral oxygenation levels during depth stimulation. Cerebral oxygenation measures of [HbO] confirmed the strong association of the right parieto-occipital cortex with processing depth perception. Our study demonstrates the validity of fNIRS to investigate [HbO] and [HbR] during high-level visual processing of complex stimuli
Effects of glaucoma and snoring on cerebral oxygenation in the visual cortex: a study using functional Near Infrared Spectroscopy (fNIRS)
Purpose: The purpose of this study was to investigate the effects of snoring and glaucoma on the visual Haemodynamic Response (HDR) using functional Near Infrared Spectroscopy (fNIRS). Methods: We recruited 8 glaucoma patients (aged 56-79), 6 habitual snorers (aged 26-61) and 10 healthy control participants (aged 21-78). Glaucoma patients were of varying subtypes and under care of ophthalmologists. Prior to testing visual acuity, blood pressure, heart rate and a medical history were taken. HDRs were recorded over the primary visual cortex (V1) using a reversing checkerboard paradigm. Results & Discussion: All participants showed the characteristic increase of Oxyhaemoglobin concentration ([HbO]) and decrease of Deoxyhaemoglobin concentration ([HbR]) during visual stimulation (p < 0.001, η2 = 0.78). Despite this, there were signifi cant group differences with a large effect size (η2 = 0.28). During visual stimulation normal participants had greater [HbO] compared to snorers and glaucoma patients (p < 0.01). Both glaucoma patients and snorers presented with comparable HDR for [HbO] and [HbR] in V1. Importantly, during visual stimulation, the increased [HbO] in glaucoma patients correlated well with their visual fi elds and self-reported activities of daily living (r = -0.98, r = -0.82, p < 0.05). Both glaucoma patients and snorers presented with an attenuated HDR in V1. Our results suggest a possible vascular link between these conditions
In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foils
The dynamics of graphene growth on polycrystalline Pt foils during chemical vapor deposition (CVD) are investigated using in situ scanning electron microscopy and complementary structural characterization of the catalyst with electron backscatter diffraction. A general growth model is outlined that considers precursor dissociation, mass transport, and attachment to the edge of a growing domain. We thereby analyze graphene growth dynamics at different length scales and reveal that the rate-limiting step varies throughout the process and across different regions of the catalyst surface, including different facets of an individual graphene domain. The facets that define the domain shapes lie normal to slow growth directions, which are determined by the interfacial mobility when attachment to domain edges is rate-limiting, as well as anisotropy in surface diffusion as diffusion becomes rate-limiting. Our observations and analysis thus reveal that the structure of CVD graphene films is intimately linked to that of the underlying polycrystalline catalyst, with both interfacial mobility and diffusional anisotropy depending on the presence of step edges and grain boundaries. The growth model developed serves as a general framework for understanding and optimizing the growth of 2D materials on polycrystalline catalysts.St. John’s College, Cambridge (Research Fellowship), European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie Individual Fellowship (Global) under Grant ID: ARTIST (no. 656870)), National Science Foundation (graduate research fellowship (DGE-1324585)), European Research Council (Grant ID: InsituNANO (no. 279342)), EUFP7 Work Programme (Grant ID: GRAFOL (project reference 285275)) , Engineering and Physical Sciences Research Council (Grant ID: GRAPHTED (project reference EP/K016636/1)), Strategic Capability programme of the National Measurement System of the U.K. Department of Business, Innovation, and Skills (project no. 119376
The effect of stimulation technique on sympathetic skin responses in healthy subjects
The aim of this study was to collect normative data for sympathetic skin responses (SSR) elicited by electrical stimulus of the ipsilateral and contralateral peripheral nerves, and by magnetic stimulus of cervical cord. SSRs were measured at the mid-palm of both hands following electrical stimulation of the left median nerve at the wrist and magnetic stimulation at the neck in 40 healthy adult volunteers (mean age 52.2 ± 12.2 years, 19 males). The onset latency, peak latency, amplitude and area were estimated in “P” type responses (i.e., waveforms with a larger positive, compared to negative, component). SSR onset and peak latency were prolonged when the electrical stimulus was applied at the contralateral side (i.e., the SSR recorded in the right palm P < 0.001). The onset latency was similar on both sides during cervical magnetic stimulation. However, peak latency was faster on the left side (P < 0.03). Comparison of electrical and magnetic stimulation revealed that both the onset and peak latency were shorter with magnetic stimulation (P < 0.001). The latency of a SSR varies depending on what type of stimulation is used and where the stimulus is applied. Electrically generated SSRs have a longer delay and the delay is prolonged at the contralateral side. These factors should be taken into account when interpreting SSR data
Investment in online self-evaluation tests: A theoretical approach
BACKGROUND: Large-scale traumatic events may burden any affected public health system with consequential charges. One major post-disaster, expense factor emerges form early psychological interventions and subsequent, posttraumatic mental health care. Due to the constant increase in mental health care costs, also post-disaster public mental health requires best possible, cost-effective care systems. Screening and monitoring the affected population might be one such area to optimize the charges. METHODS: This paper analyzes the potential cost-effectiveness of monitoring a psychologically traumatized population and to motivate individuals at risk to seek early treatment. As basis for our model served Grossman's health production function, which was modified according to fundamental concepts of cost-benefit analyzes, to match the basic conditions of online monitoring strategies. We then introduce some fundamental concepts of cost-benefit analysis. RESULTS: When performing cost-benefit analyses, policy makers have to consider both direct costs (caused by treatment) and indirect costs (due to non-productivity). Considering both costs sources we find that the use of Internet-based psychometric screening instruments may reduce the duration of future treatment, psychological burden and treatment costs. CONCLUSION: The identification of individuals at risk for PTSD following a disaster may help organizations prevent both the human and the economic costs of this disease. Consequently future research on mental health issues should put more emphasis on the importance of monitoring to detect early PTSD and focus the most effective resources within early treatment and morbidity prevention
Tau-dependent suppression of adult neurogenesis in the stressed hippocampus
uncorrected proofStress, a well-known sculptor of brain plasticity, is shown to suppress hippocampal neurogenesis in the adult brain; yet, the underlying cellular mechanisms are poorly investigated. Previous studies have shown that chronic stress triggers hyperphosphorylation and accumulation of the cytoskeletal protein Tau, a process that may impair the cytoskeleton-regulating role (s) of this protein with impact on neuronal function. Here, we analyzed the role of Tau on stress-driven suppression of neurogenesis in the adult dentate gyrus (DG) using animals lacking Tau (Tau-knockout; Tau-KO) and wild-type (WT) littermates. Unlike WTs, Tau-KO animals exposed to chronic stress did not exhibit reduction in DG proliferating cells, neuroblasts and newborn neurons; however, newborn astrocytes were similarly decreased in both Tau-KO and WT mice. In addition, chronic stress reduced phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR)/glycogen synthase kinase-3 beta (GSK3 beta)/beta-catenin signaling, known to regulate cell survival and proliferation, in the DG of WT, but not Tau-KO, animals. These data establish Tau as a critical regulator of the cellular cascades underlying stress deficits on hippocampal neurogenesis in the adult brain.Portuguese Foundation for Science and Technology (FCT) Investigator grants (IF/01799/2013, IF/00883/2013, IF/01079/2014, respectively). This work was funded by FCT research grants 'PTDC/SAU-NMC/113934/2009' (IS), the Portuguese North Regional Operational Program (ON.2) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), the Project Estratégico co-funded by FCT (PEst-C/SAU/LA0026/2013) and the European Regional Development Fund COMPETE (FCOMP-01-0124-FEDER-037298) as well as the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER)info:eu-repo/semantics/publishedVersio
The epidemiology and patterns of acute and chronic toxicity associated with recreational ketamine use
Ketamine was originally synthesised for use as a dissociative anaesthetic, and it remains widely used legitimately for this indication. However, there is increasing evidence of non-medical recreational use of ketamine, particularly in individuals who frequent the night-time economy. The population-level and sub-population (clubbers) prevalence of recreational use of ketamine is not known but is likely to be similar, or slightly lower than, that of other recreational drugs such as cocaine, MDMA, and amphetamine
- …