398 research outputs found

    Using Functional Near Infrared Spectroscopy (fNIRS) to study dynamic stereoscopic depth perception

    Get PDF
    The parietal cortex has been widely implicated in the processing of depth perception by many neuroimaging studies, yet functional near infrared spectroscopy (fNIRS) has been an under-utilised tool to examine the relationship of oxy- ([HbO]) and de-oxyhaemoglobin ([HbR]) in perception. Here we examine the haemodynamic response (HDR) to the processing of induced depth stimulation using dynamic random-dot-stereograms (RDS). We used fNIRS to measure the HDR associated with depth perception in healthy young adults (n = 13, mean age 24). Using a blocked design, absolute values of [HbO] and [HbR] were recorded across parieto-occipital and occipital cortices, in response to dynamic RDS. Control and test images were identical except for the horizontal shift in pixels in the RDS that resulted in binocular disparity and induced the percept of a 3D sine wave that 'popped out' of the test stimulus. The control stimulus had zero disparity and induced a 'flat' percept. All participants had stereoacuity within normal clinical limits and successfully perceived the depth in the dynamic RDS. Results showed a significant effect of this complex visual stimulation in the right parieto-occipital cortex (p < 0.01, η(2) = 0.54). The test stimulus elicited a significant increase in [HbO] during depth perception compared to the control image (p < 0.001, 99.99 % CI [0.008-0.294]). The similarity between the two stimuli may have resulted in the HDR of the occipital cortex showing no significant increase or decrease of cerebral oxygenation levels during depth stimulation. Cerebral oxygenation measures of [HbO] confirmed the strong association of the right parieto-occipital cortex with processing depth perception. Our study demonstrates the validity of fNIRS to investigate [HbO] and [HbR] during high-level visual processing of complex stimuli

    Editorial: From Pedagogic Research to Embedded E-Learning

    Get PDF
    This Special Issue of Reflecting Education arises from the work of the PREEL project (From Pedagogic Research to Embedded e-Learning) at the Institute of Education from 2006-2008. This project was one of nine HEA/JISC (Higher Education Academy and Joint Information Systems Committee) Pilot Pathfinder Projects and followed on from our involvement in the Pilot Benchmarking of e-Learning Programme. In the benchmarking exercise we identified a lack of coordination between research and practice in e-learning at the IoE as one of our crucial weaknesses, and so our Pilot Pathfinder project concentrated on this theme of building links between e-learning research and practice

    A new displacement-based approach to calculate stress intensity factors with the boundary element method

    Get PDF
    The analysis of cracked brittle mechanical components considering linear elastic fracture mechanics is usually reduced to the evaluation of stress intensity factors (SIFs). The SIF calculation can be carried out experimentally, theoretically or numerically. Each methodology has its own advantages but the use of numerical methods has be-come very popular. Several schemes for numerical SIF calculations have been developed, the J-integral method being one of the most widely used because of its energy-like formulation. Additionally, some variations of the J-integral method, such as displacement-based methods, are also becoming popular due to their simplicity. In this work, a simple displacement-based scheme is proposed to calculate SIFs, and its performance is compared with contour integrals. These schemes are all implemented with the Boundary Element Method (BEM) in order to exploit its advantages in crack growth modelling. Some simple examples are solved with the BEM and the calculated SIF values are compared against available solutions, showing good agreement between the different schemes

    T-cell production of matrix metalloproteinases and inhibition of parasite clearance by TIMP-1 during chronic Toxoplasma infection in the brain

    Get PDF
    Chronic infection with the intracellular protozoan parasite Toxoplasma gondii leads to tissue remodelling in the brain and a continuous requirement for peripheral leucocyte migration within the CNS (central nervous system). In the present study, we investigate the role of MMPs (matrix metalloproteinases) and their inhibitors in T-cell migration into the infected brain. Increased expression of two key molecules, MMP-8 and MMP-10, along with their inhibitor, TIMP-1 (tissue inhibitor of metalloproteinases-1), was observed in the CNS following infection. Analysis of infiltrating lymphocytes demonstrated MMP-8 and -10 production by CD4+ and CD8+ T-cells. In addition, infiltrating T-cells and CNS resident astrocytes increased their expression of TIMP-1 following infection. TIMP-1-deficient mice had a decrease in perivascular accumulation of lymphocyte populations, yet an increase in the proportion of CD4+ T-cells that had trafficked into the CNS. This was accompanied by a reduction in parasite burden in the brain. Taken together, these findings demonstrate a role for MMPs and TIMP-1 in the trafficking of lymphocytes into the CNS during chronic infection in the brain

    (2E,4E)-1-(6-Chloro-2-methyl-4-phenyl-3-quinol­yl)-5-phenyl­penta-2,4-dien-1-one

    Get PDF
    In the title compound, C27H20ClNO, the quinoline ring forms a dihedral angle of 62.53 (5)° with the substituent benzene ring. In the crystal, inter­molecular C—H⋯Cl inter­actions link the mol­ecules into chains along the b axis. Inter­molecular C—H⋯N and C—H⋯O hydrogen bonds further consolidate the structure into a three-dimensional network. The unit cell contains four solvent-accessible voids, each with a volume of 35 Å3, but no significant electron density was found in them

    The effect of stimulation technique on sympathetic skin responses in healthy subjects

    Get PDF
    The aim of this study was to collect normative data for sympathetic skin responses (SSR) elicited by electrical stimulus of the ipsilateral and contralateral peripheral nerves, and by magnetic stimulus of cervical cord. SSRs were measured at the mid-palm of both hands following electrical stimulation of the left median nerve at the wrist and magnetic stimulation at the neck in 40 healthy adult volunteers (mean age 52.2 ± 12.2 years, 19 males). The onset latency, peak latency, amplitude and area were estimated in “P” type responses (i.e., waveforms with a larger positive, compared to negative, component). SSR onset and peak latency were prolonged when the electrical stimulus was applied at the contralateral side (i.e., the SSR recorded in the right palm P < 0.001). The onset latency was similar on both sides during cervical magnetic stimulation. However, peak latency was faster on the left side (P < 0.03). Comparison of electrical and magnetic stimulation revealed that both the onset and peak latency were shorter with magnetic stimulation (P < 0.001). The latency of a SSR varies depending on what type of stimulation is used and where the stimulus is applied. Electrically generated SSRs have a longer delay and the delay is prolonged at the contralateral side. These factors should be taken into account when interpreting SSR data

    Tau-dependent suppression of adult neurogenesis in the stressed hippocampus

    Get PDF
    uncorrected proofStress, a well-known sculptor of brain plasticity, is shown to suppress hippocampal neurogenesis in the adult brain; yet, the underlying cellular mechanisms are poorly investigated. Previous studies have shown that chronic stress triggers hyperphosphorylation and accumulation of the cytoskeletal protein Tau, a process that may impair the cytoskeleton-regulating role (s) of this protein with impact on neuronal function. Here, we analyzed the role of Tau on stress-driven suppression of neurogenesis in the adult dentate gyrus (DG) using animals lacking Tau (Tau-knockout; Tau-KO) and wild-type (WT) littermates. Unlike WTs, Tau-KO animals exposed to chronic stress did not exhibit reduction in DG proliferating cells, neuroblasts and newborn neurons; however, newborn astrocytes were similarly decreased in both Tau-KO and WT mice. In addition, chronic stress reduced phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR)/glycogen synthase kinase-3 beta (GSK3 beta)/beta-catenin signaling, known to regulate cell survival and proliferation, in the DG of WT, but not Tau-KO, animals. These data establish Tau as a critical regulator of the cellular cascades underlying stress deficits on hippocampal neurogenesis in the adult brain.Portuguese Foundation for Science and Technology (FCT) Investigator grants (IF/01799/2013, IF/00883/2013, IF/01079/2014, respectively). This work was funded by FCT research grants 'PTDC/SAU-NMC/113934/2009' (IS), the Portuguese North Regional Operational Program (ON.2) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), the Project Estratégico co-funded by FCT (PEst-C/SAU/LA0026/2013) and the European Regional Development Fund COMPETE (FCOMP-01-0124-FEDER-037298) as well as the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER)info:eu-repo/semantics/publishedVersio

    Toxoplasmosis-associated IRIS involving the CNS: a case report with longitudinal analysis of T cell subsets

    Get PDF
    Background: HIV-infected patients may present an unforeseen clinical worsening after initiating antiretroviral therapy known as immune reconstitution inflammatory syndrome (IRIS). This syndrome is characterized by a heightened inflammatory response toward infectious or non-infectious triggers, and it may affect different organs. Diagnosis of IRIS involving the central nervous system (CNS-IRIS) is challenging due to heterogeneous manifestations, absence of biomarkers to identify this condition, risk of long-term sequelae and high mortality. Hence, a deeper knowledge of CNS-IRIS pathogenesis is needed. Case presentation: A 37-year-old man was diagnosed with AIDS and cerebral toxoplasmosis. Anti-toxoplasma treatment was initiated immediately, followed by active antiretroviral therapy (HAART) 1 month later. At 2 months of HAART, he presented with progressive hyposensitivity of the right lower limb associated with brain and dorsal spinal cord lesions, compatible with paradoxical toxoplasmosis-associated CNS-IRIS, a condition with very few reported cases. A stereotactic biopsy was planned but was postponed based on its inherent risks. Patient showed clinical improvement with no requirement of corticosteroid therapy. Routine laboratorial analysis was complemented with longitudinal evaluation of blood T cell subsets at 0, 1, 2, 3 and 6 months upon HAART initiation. A control group composed by 9 HIV-infected patients from the same hospital but with no IRIS was analysed for comparison. The CNS-IRIS patient showed lower percentage of memory CD4(+) T cells and higher percentage of activated CD4(+) T cells at HAART initiation. The percentage of memory CD4(+) T cells drastically increased at 1 month after HAART initiation and became higher in comparison to the control group until clinical recovery onset; the percentage of memory CD8(+) T cells was consistently lower throughout follow-up. Interestingly, the percentage of regulatory T cells (Treg) on the CNS-IRIS patient reached a minimum around 1 month before symptoms onset. Conclusion: Although both stereotactic biopsies and steroid therapy might be of use in CNS-IRIS cases and should be considered for these patients, they might be unnecessary to achieve clinical improvement as shown in this case. Immunological characterization of more CNS-IRIS cases is essential to shed some light on the pathogenesis of this condition.Portuguese Foundation for Science and Technology (FCT; PIC/IC/83313/2007) and co-financed by the Portuguese North Regional Operational Program (ON.2 - O Novo Norte) under the National Strategic Reference Framework (QREN) through the European Regional Development Fund (FEDER). A FCT fellowship was attributed to RRS (PD/BD/106047/2015; Inter-University Doctoral Program in Ageing and Chronic Disease) and to CN [SFRH/BPD/65380/2009; Programa Operacional Potencial Humano (POPH) through the Fundo Social Europeu (FSE)]info:eu-repo/semantics/publishedVersio
    corecore