275 research outputs found
Social Network Applications and Free Online Mobile Numbers: Real Risk
Social network applications are being more widely used among users and new types of such applications are created by developers. Almost all users who use smart phones are users of such application. Major concern in these applications is privacy and security. We can name WhatsApp, Viber, Facebook, Telegram, Line, WeChat and Beetalk as the most popular applications. There are also websites which provide online numbers in order to receive SMS. The goal of this website is providing anonymous virtual phone number to protect users from spam. Also these sites provide different number from different countries and let people to can use them for different application. The services of these websites are divided into two groups: subscription services in which a unique number is assigned to the user by charging him/her and free services in which user can see the received messages of some online numbers without any registration
Short-term hydrological drought forecasting based on different nature-inspired optimization algorithms hybridized with artificial neural networks
Hydrological drought forecasting plays a substantial role in water resources management. Hydrological drought highly affects the water allocation and hydropower generation. In this research, short term hydrological drought forecasted based on the hybridized of novel nature-inspired optimization algorithms and Artificial Neural Networks (ANN). For this purpose, the Standardized Hydrological Drought Index (SHDI) and the Standardized Precipitation Index (SPI) were calculated in one, three, and six aggregated months. Then, three states where proposed for SHDI forecasting, and 36 input-output combinations were extracted based on the cross-correlation analysis. In the next step, newly proposed optimization algorithms, including Grasshopper Optimization Algorithm (GOA), Salp Swarm algorithm (SSA), Biogeography-based optimization (BBO), and Particle Swarm Optimization (PSO) hybridized with the ANN were utilized for SHDI forecasting and the results compared to the conventional ANN. Results indicated that the hybridized model outperformed compared to the conventional ANN. PSO performed better than the other optimization algorithms. The best models forecasted SHDI1 with R2 = 0.68 and RMSE = 0.58, SHDI3 with R 2 = 0.81 and RMSE = 0.45 and SHDI6 with R 2 = 0.82 and RMSE = 0.40
ADAPTIVE NEURO-FUZZY COMPUTING TECHNIQUE FOR PRECIPITATION ESTIMATION
The paper investigates the accuracy of an adaptive neuro-fuzzy computing technique in precipitation estimation. The monthly precipitation data from 29 synoptic stations in Serbia during 1946-2012 are used as case studies. Even though a number of mathematical functions have been proposed for modeling the precipitation estimation, these models still suffer from the disadvantages such as their being very demanding in terms of calculation time. Artificial neural network (ANN) can be used as an alternative to the analytical approach since it offers advantages such as no required knowledge of internal system parameters, compact solution for multi-variable problems and fast calculation. Due to its being a crucial problem, this paper presents a process constructed so as to simulate precipitation with an adaptive neuro-fuzzy inference (ANFIS) method. ANFIS is a specific type of the ANN family and shows very good learning and prediction capabilities, which makes it an efficient tool for dealing with encountered uncertainties in any system such as precipitation. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system (FIS). This intelligent algorithm is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method
FCS-MBFLEACH: Designing an Energy-Aware Fault Detection System for Mobile Wireless Sensor Networks
Wireless sensor networks (WSNs) include large-scale sensor nodes that are densely distributed over a geographical region that is completely randomized for monitoring, identifying, and analyzing physical events. The crucial challenge in wireless sensor networks is the very high dependence of the sensor nodes on limited battery power to exchange information wirelessly as well as the non-rechargeable battery of the wireless sensor nodes, which makes the management and monitoring of these nodes in terms of abnormal changes very difficult. These anomalies appear under faults, including hardware, software, anomalies, and attacks by raiders, all of which affect the comprehensiveness of the data collected by wireless sensor networks. Hence, a crucial contraption should be taken to detect the early faults in the network, despite the limitations of the sensor nodes. Machine learning methods include solutions that can be used to detect the sensor node faults in the network. The purpose of this study is to use several classification methods to compute the fault detection accuracy with different densities under two scenarios in regions of interest such as MB-FLEACH, one-class support vector machine (SVM), fuzzy one-class, or a combination of SVM and FCS-MBFLEACH methods. It should be noted that in the study so far, no super cluster head (SCH) selection has been performed to detect node faults in the network. The simulation outcomes demonstrate that the FCS-MBFLEACH method has the best performance in terms of the accuracy of fault detection, false-positive rate (FPR), average remaining energy, and network lifetime compared to other classification methods
Particle swarm optimization model to predict scour depth around bridge pier
Scour depth around bridge piers plays a vital role in the safety and stability of the bridges. Existing methods to predict scour depth are mainly based on regression models or black box models in which the first one lacks enough accuracy while the later one does not provide a clear mathematical expression to easily employ it for other situations or cases. Therefore, this paper aims to develop new equations using particle swarm optimization as a metaheuristic approach to predict scour depth around bridge piers. To improve the efficiency of the proposed model, individual equations are derived for laboratory and field data. Moreover, sensitivity analysis is conducted to achieve the most effective parameters in the estimation of scour depth for both experimental and filed data sets. Comparing the results of the proposed model with those of existing regression-based equations reveal the superiority of the proposed method in terms of accuracy and uncertainty. Moreover, the ratio of pier width to flow depth and ratio of d50 (mean particle diameter) to flow depth for the laboratory and field data were recognized as the most effective parameters, respectively. The derived equations can be used as a suitable proxy to estimate scour depth in both experimental and prototype scales
- …