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ABSTRACT Hydrological drought forecasting plays a substantial role in water resources management.
Hydrological drought highly affects the water allocation and hydropower generation. In this research,
short term hydrological drought forecasted based on the hybridized of novel nature-inspired optimiza-
tion algorithms and Artificial Neural Networks (ANN). For this purpose, the Standardized Hydrological
Drought Index (SHDI) and the Standardized Precipitation Index (SPI) were calculated in one, three, and
six aggregated months. Then, three states where proposed for SHDI forecasting, and 36 input-output
combinations were extracted based on the cross-correlation analysis. In the next step, newly proposed
optimization algorithms, including Grasshopper Optimization Algorithm (GOA), Salp Swarm algorithm
(SSA), Biogeography-based optimization (BBO), and Particle Swarm Optimization (PSO) hybridized with
the ANN were utilized for SHDI forecasting and the results compared to the conventional ANN. Results
indicated that the hybridized model outperformed compared to the conventional ANN. PSO performed better
than the other optimization algorithms. The best models forecasted SHDI1 with R2 = 0.68 and RMSE =
0.58, SHDI3 with R?> = 0.81 and RMSE = 0.45 and SHDI6 with R? = 0.82 and RMSE = 0.40.

INDEX TERMS Hydrological drought, precipitation, machine learning, hydrology, SPI, PSO, SSA, BBO,

GOA.

I. INTRODUCTION

Drought is a natural phenomenon that occurs in all climates.
It is a creeping event with an extensive spatial coverage that
the determination of the onset and end of drought is diffi-
cult [1]. As the drought occurs in every part of the world even-
tually, the water resources systems affect by that, and it leads
to water shortage in an area during a short to long period.
Generally, drought classifies into four types, including mete-
orological, hydrological, agricultural and socio-economic
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drought [2], [3]. It can be said that drought is a progressive
phenomenon that starts with a precipitation deficit as a mete-
orological drought. Prolonged meteorological drought may
lead to hydrological drought resulted in decreasing the dam
reservoir volume, river flow, and water level in lakes. Also, a
sustained hydrological drought leads to agricultural drought.

While drought is considered as a climate variability event,
mitigation of its impacts on water resources systems, agri-
culture sector, hydropower generation, and associated socio-
economic impacts motivated the researchers to establish
drought forecasting models. Results of drought forecasting
can effectively utilize for water resources decision making,
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early warning and applying the drought mitigation strategies.
However, due to the complexity of drought phenomenon and
its creeping nature, drought forecasting is a challenging issue.

In drought monitoring and forecasting, the first and the
most essential issue is drought identification and quantifi-
cation. For this purpose, from the 1960s, different drought
indices were developed based on the individual or multi-
ple meteorological or hydrological variables and used for
drought monitoring and forecasting. Among all drought
indices, standardized precipitation index (SPI) proposed by
McKee et al. [4] (1993) [4] reaches high attention and widely
used for drought quantification across the world [5]. Also,
several hydrological drought indices were proposed and uti-
lized. Surface water supply index (SWSI) [6], standardized
runoff index (SRI) [7], and standardized hydrological drought
index (SHDI) [5] are the most widely used hydrological
drought indices.

After drought quantification, the most crucial issue in
drought forecasting is the choice of a suitable model [8].
Physical, conceptual, and data-driven models are widely used
for drought forecasting. Physical and conceptual models con-
sider the basin processes, so, they are data-intensive and make
a complicated model which is appropriate when required data
is available [9]. In contrast, data-driven models implement
the minimum data without considering the catchment process
and act as a black-box model. Data-driven models were used
to forecast several meteorological and hydrological variables
satisfactorily [10]. In recent years, different types of models
including time series [11], [12], neural networks [13]-[18],
fuzzy inference systems [19], [20], support vector regres-
sion [21]-[23] and copula functions [24]-[26] were utilized
for drought forecasting. Most of these researches were car-
ried out for meteorological drought forecasting, and few of
them were conducted to forecast the hydrological drought
indices [27]-[31]. Due to the complexity and non-linear
process of drought, using soft computing methods reaches
high attention in drought forecasting. Among all machine
learning methods, ANN is one of the oldest and maybe the
most well-known method. Parallel processing, ability to work
with incomplete information, working with noisy data and its
ability to learn the patterns are the main factors that make it
popular in water resources modeling. In contrast, the same
as other models, ANN has several shortcomings. The main
disadvantage of ANN is that it is a black-box model, and
the intermediate processes between input-output combina-
tions were not considered. Besides, the architecture of the
ANN is not constant, and the best results in each problem
achieve using different architecture, which determines via a
trial and error procedure. Also, based on every architecture,
appropriate values must be assigned to several parameters,
including the weights and biases. So, training the ANN is
time-consuming, and it may trap in local minima, which the
results are not reliable in this case. To remedy this problem,
several optimization algorithms were proposed during the
past decades. Recently a new category of optimization algo-
rithms so-called nature-inspired was developed. Based on the
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FIGURE 1. Location of the Dez dam and the precipitation stations in Iran
(after Dehghani et al. 2019a).

authors’ knowledge, there is no study that evaluated the cou-
pled of intelligent models with nature-inspired optimization
algorithms for hydrological drought forecasting. Threfore,
in this study, the ANN coupled with four optimization algo-
rithms to forecast the hydrological drought. For this purpose,
the Dez basin in the southwestern of Iran was considered as
the case study. Dez dam is one of the highest dams in Iran that
its reservoir is used for hydropower generation and irrigation
of the farming lands in the downstream of the dam. Therefore,
hydrological drought in this basin can affect agricultural pro-
duction and reducing hydropower generation. The SHDI was
calculated based on the inflow to the dam. Then, ANN was
coupled by SSA, BBO, GOA and PSO algorithms to forecast
the hydrological drought. The SSA, BBO, GOA and PSO
algorithms have recently shown promising results in optimiz-
ing machine learning models for hydrological applications
[30]. Thus, they have been confidently selected for this study.

The rest of the paper is organized as follows. Section II
contains the case study, SPI, and SHDI calculation, selec-
tion of input-output combinations, ANN and optimization
algorithms. In section III, the results were presented and a
detailed comparison between different models was carried
out. Finally, a brief description of the findings of this research
was drawn as the conclusion in section I'V.

Il. MATERIAL AND METHODS

A. CASE STUDY

The Dez Dam is a double curvature arch dam in south-
western Iran constructed and operated in 1963 (Figure 1).
It is located on the Dez River, which is one of the longest
rivers in Iran (510 km). The reservoir volume and the dam
height are 3340 x 10°m3 and 203 m respectively [32]. It is
a multi-objective dam that is designed and constructed for
hydropower generation, Irrigation, flood control, and water
supply. About 125000 ha of the agricultural area downstream,
the Dez dam is irrigated by water released from the dam.
Also, 520 MW electricity is generated by hydropower plants
installed downstream of the dam.
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The dam inflow is measured at Tele-Zang station located
just upstream of the dam. There are four meteorological sta-
tions in the Dez catchment and ten stations around the catch-
ment (Figure 1). The hydrometric and precipitation data were
gathered from Iran’s Water Resources Management Com-
pany (http://www.wrm.ir/index.php?l = EN) and Iran Meteo-
rological Organization (http://www.irimo.ir/eng/index.php).
The monthly data covered the range of October 1963 to
September 2017.

The average precipitation over the basin was interpolated
using the inverse distance weight (IDW) method.

B. SPI AND SHDI CALCULATIONS

Several meteorological drought indices were proposed by
researchers during the past decades, among all, SPI received
high attention, and it is widely used for drought moni-
toring and forecasting in different countries [26]. As SPI
is calculated based on just precipitation, it is a simple
drought index, and due to the normality, it is possible to
use it in spatial and temporal comparison. For SPI calcula-
tion, first, a proper probability distribution function (default
function is gamma) is fitted to a long-term data (at least
30 years).

a—1

gx) = e7 forx >0, a,8>0
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() = f ¥ ledy 4))
0

where I' («) is the gamma function and « and 8 are the shape
and scale parameters respectively [26].

Then its cumulative probability distribution will transform
via an equal probability transformation to the normal dis-
tribution with mean zero and standard deviation of unity.
The transformed values are SPI. This procedure can be done
for every time scale. Positive and negative values of SPI
show greater and less than median precipitation, respectively.
Dehghani e al. [5] developed the SHDI by replacing the
precipitation with discharge.

TABLE 1. SPI and SHDI classification (Dehghani et al., 2017).

Class Value
Extremely wet 2 and above
Severely wet 1.5t0 1.99
Moderately wet 1to 1.49
Near normal lto-1
Moderately dry -1t0-1.49
Severely dry -1.5t0-1.99
Extremely dry -2 and less

Table 1 shows the classification of SPI and SHDI. The pro-
cedure of SPI and SHDI calculation was presented elsewhere
and one may refer to [33]-[38].
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C. DROUGHT FORECASTING SCENARIOS AND
INPUT-OUTPUT COMBINATIONS

Drought events happen in the short term and long-term peri-
ods. Typically, drought is considered long term if it sustained
more than six months. As dam operation and water allo-
cation to different sectors, including agricultural, domestic,
or industrial need short term information about drought/wet
condition, in this research, hydrological drought for 1, 3, and
6 months ahead were forecasted. So, the SHDI was calculated
for 1, 3, and 6 months’ time scale, which hereafter is called
SHDI1, SHDI3 and SHDI6. These three time scales were
considered as the states that must be forecasted. In the next
step, it is needed to determine the best predictors for these
three states. As it is evident, the hydrological drought in
previous months may be a suitable predictor. Also, the pre-
cipitation and meteorological drought in previous months can
be considered as appropriate predictors. So, to prepare a set
of predictors for hydrological forecasting, cross-correlation
analysis was carried out. Results are presented in Figure 2.
Based on this figure, SHDI in all time scales has the highest
cross-correlation with its lags and in the next steps with
SPI and precipitation. So, these parameters could be used
as the predictors for SHDI forecasting. On the other hand,
to evaluate the capability of hybrid models in forecasting
SHDI in several ahead months, for SHDI1 and SHDI3, three
input combinations were considered. Also, six input combi-
nations were considered for SHDI6. Therefore, three states
and 12 input combinations resulted in 36 input-output com-
binations for modeling, as presented in Table 2.

D. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks were first introduced in 1943 by
Pitts and McCulloch (ASCE, 2000). In the mid-1980s,
Mc Clelland and Rumelhart developed backpropagation
algorithms that could be used to train complex net-
works. Since the early 1990s, these models have also
been used successfully in hydrology, including modeling of
rainfall-runoff processes, river flow prediction, and so on.
Dehghani and Moradkhani [25] outlined the benefits of the
ANN model, which has made widespread use in various
fields:

- Having the characteristic of distributed information pro-
cessing.

- Ability to detect the relationship between input and output
variables without physical consideration of the phenomenon.

- Proper performance of these models even with measure-
ment error.

The way neural networks work is inspired by the way
neural neurons work. In neurons, information is received
by dendrites, reaching the body of the cell (including the
nucleus and other protective components), stimulating the
cell, providing the body with the energy needed for neu-
ron activity, and it operates on the input signals, which is
modeled by a simple operation and compared to a thresh-
old level. Then the result is transferred to the next cell by

VOLUME 8, 2020



N. Nabipour et al.: Short-Term Hydrological Drought Forecasting

IEEE Access

SHOM.SHDI SHDI1P SHON1.SP11
5 i
= | X
e nL J e 24 w 9 ||
5z J Bl l HH ........ ged 3
g"“*"”ttt'ﬂf”"”' __!!!_EHﬁﬂﬂ!tt:tr_::: B h:l_l_l_‘ff%“”h ER '____:_i'_'__'_'_____HH_{'_'__"”" =
A 40 ' 10 » » a0 B 10 » A o o 10 »
Lag Lag ™
SHDIZ-SHDI3 SHDIZP SHIM3-5P13
,,— 2 21
39 a7 a
5 5] 31 — T 5 2] H
1 ||Ian]|||‘ ) o 1 e T it 5] ez h‘hdlﬂtf.‘.‘.‘ﬁ'ﬁ'
o rroyypet bbb ‘| ‘Hfh'rn'nn TT T T
= T -__-_-I__ T S I [ _-__]_- T -_-_-__l_________l ______ T ; = T -_-_l _________ p————r T B T
-0 10 o ‘ﬂ m =20 10 (] 10 N 20 10 -] 10 20
Lag Lag Leg
SHDIG-SHDIE SHDIE P SHDIE-SPI6
. F
= A 1]
5 ” “Il gag SrS— ST 1[I F—— § 3] i m
o -l-n111ﬂ‘[+H-I‘”Jc”u L“'l '“H‘I‘]‘I‘H'J'n- B ot 1 1 11' T il i rilie s S 1NN TY i il ['['HI”.H'HTH‘I:T
e e Ele e s ameree— e s
-29 —IU ﬂ 10 20 20 10 ] 10 2\? 20 10 ] 'I'ﬂ 20
Ly a3 Lsg

FIGURE 2. Cross-correlation analysis between SHDI, SPI, and precipitation.

TABLE 2. Different input-output combinations in hydrological drought forecasting.

Predictand | Model | Input parameters

State 1 | SHDIIt SHDII(t-1)
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the axons. An artificial neural network does just that. A
detailed

explanation of ANN presented elsewhere (ASCE, 2000,
Dehghani et al. [26], [5], [31]). Mosavi et al. [30] reviewed
the state of the art applications of ANN in hydrological
models along with a comparison with other machine learning
models. After selecting the inputs, it is time to build a neural
network model to predict drought. A MLP network with
backpropagation training algorithm was considered in this
research. The main challenging issue in ANN modeling
is assigning the appropriate weights and biases, which are
determined during the iteration process. To remedy this
problem, it is possible to use optimization algorithms, which
are powerful tools in this field which are discussed in the next
sections.

E. PARTICLE SWARM OPTIMIZATION

The particle swarm optimization is a meta-heuristic algorithm
proposed by Eberhart and Kennedy [39] for global optimiza-
tion. It is inspired by the animal swarming such as birds and
fish. In the PSO, there are several particles distributed in the
N-dimensional search space. Each particle has its random
velocity and position. Particles move to the location of the
best fitness, which is obtained by them and the best position
of the neighbors’ particles (local and global bests) [40]. Com-
bination of the information of the current location for each
particle and the best position it has been in, as well as the
information of one or more particles with the best location,
leads to movement. After the mass movement, one step of
the algorithm ends. These steps are repeated several times
until the desired result is obtained. The flowchart of the PSO
algorithm was drawn in Figure 3. Also, for more information
about the PSO, one may refer to [39], [41]. The novel machine
learning models using PSO have been recently emerging.
PSO have been shown to improve the performance of various
hybrid machine learning methods through tuning the model
parameters in hydrological applications [30].

F. BIOGEOGRAPHY-BASED OPTIMIZATION

ABBO was developed based on the biogeography concept by
Simon (2008) [42]. Simply, the algorithm works as follows.
There are some isolated islands so-called the habitat. Differ-
ent spices live in these islands. Each island has a habitat suit-
ability index (HSI), which means that some islands are more
appropriate for habitation. HSI is related to some features
such as temperature, rainfall, topography, etc., which called
suitability index variables (SIVs). BBO shows how species
migrate. Habitats with high HSI have several creatures, while
low HSI associated with few creatures. So, a high HSI habi-
tats tend to migrate to other habitats. This transferring called
emigration and the process called immigration. Therefore,
high HSI has a high emigration rate while low HSI has
high immigration rate [43]. The BBO algorithm is based on
migration and mutation. In BBO, a vector of real numbers
which are SIV considered as a solution [44]. The fitness
function is calculated using the objective function. It must be
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FIGURE 3. Flowcharts of PSO, BBO, SSA and GOA optimization algorithms.

noted that the solutions with high and low HSI are considered
as good and bad solutions, respectively. The probabilistic
approach is used to share the information between habitats.
The modification of each solution is based on the emigration
and immigration rates. The elitism process is governed in
the BBO algorithm, and just a number of best solutions are
transferred to the next iteration [43]. As each solution has its
own probability, the one with low probability has the chance
to mutate while the solution with high probability has little
chance to mutate. BBO has shown promising results when
using in a hybrid form with machine learning methods to tune
the model parameters [30]. Detailed description of the BBO
presented elsewhere [42]-[44], and the flowchart of BBO is
shown in Figure 3.

G. SALP SWARM OPTIMIZATION

SSA is a recent novel nature-inspired meta-heuristic opti-
mization algorithm proposed by Mirjalili ez al. [45]. Salps live
in the deep ocean often form a swarm so-called salp chain.
This chain helps them to obtain more kinetic energy during
the pursuing of the food source. SSA mitigates the inertia
to the local optima, but it is not possible to find the global
optimum in some cases, and this is one of the limitations
of this algorithm. Salps classify into two groups, the leader,
the one in the head of the chain and the followers. The leader

VOLUME 8, 2020



N. Nabipour et al.: Short-Term Hydrological Drought Forecasting

IEEE Access

guides the direction, and the followers follow each other.
The position of salps is defined in an N-dimensional search
space. N is the number of variables in the problem. F is
defined as the food source in the search space. So, the position
of the leader is determined by:

o Fj + c1 ((ubj — Ibj) c2 + Ibj)
T | Fi— e ((uby — b)) ¢ + 1b;)

c3>0.5

@

c3 <0.5

where le is the position of the leader, F; is the position of
food source in the jth dimension, ub; and [b; are the upper
and lower limits of jth dimension and ¢y, ¢> and ¢3 are random
values. ¢ is calculated based on the equation (3) while ¢, and
c3 generated randomly inside [0, 1].

c1 =2e (T'W ) 3)

where, t and T,,,, are the current and maximum number
of iterations, respectively. The flowchart of SSA is shown
in Figure 3.

H. GRASSHOPPER OPTIMIZATION ALGORITHM

The GOA is a meta-heuristic algorithm proposed by
Mirjalili et al. [46]. GOA is a population-based method
mimicking the behavior of grasshopper swarms and their
social interaction. Although the grasshoppers are individual
in nature, they join in huge swarm. Food source seeking is
one of the most essential characteristics of the swarming of
grasshoppers by dividing the search process into exploration
and exploitation. The position of each grasshopper in the
swarm is based on the social interaction between it and the
other grasshoppers S;, the gravity force on it G; and the wind
advection A; as presented in equation (4):

X; = Si + G+ A;

N A A

Si = Z]#ls(d,])d idi
JF

—e "djj = |xj — x| )

— X ( ) f 71r
s(r)=je
ij

where, dj; is the distance between i-th and j-th grasshopper,
s is the strength of social forces, f is the intensity attrac-
tion, and / is the attractive length scale. When the distance
between two grasshoppers is in the interval [0, 2.079], then
the repulsion force happens, the distance equal 2.079 leads to
neither attraction nor repulsion and the distance greater than
2.079 causes an increase in attraction force, then it decreases
gradually when it reaches to 4.
The gravity force calculated as follows:

Gi = —gé, &)

where, g is the gravitational constant, and ¢, is a unity vector
toward the center of the earth.
Wind advection is described as follows:

A; = ue,, (6)

where, u is a constant drift, and e,, is a unit vector in the
direction of wind (Mirjalili et al. [46], 2018). A detailed
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FIGURE 4. The proposed framework for optimizing the ANN using PSO,
BBO, SSA and GOA algorithms for hydrological drought forecasting.

explanation about this newly developed algorithm was pre-
sented in [46] and the flowchart of GOA is shown in Figure 3

Based on Figure 4, the proposed hybrid model works as
follows:

Step 1. Calculate SPI and SHDI in different time scales.

Step 2. Consider an input-output combination based on
Table 3.

Step 3. Prepare the input and output based on step 2.

Step 4. Create the initial ANN architecture.

Step 5. To couple each of the optimization algorithms with
ANN, Create the initial population of particles, determine
the initial location (for PSO and GOA), velocity (for PSO),
emigration and immigration rate (for BBO), set initial bound
limits (for SSA) and objective functions.

Step 6. Evaluate the objective function based on the root
mean squared error (RMSE) for each particle and determine
the best solution.

Step 7. Update the location, velocity, emigration and immi-
gration rate and evaluate the fitness function.

Step 8. If the stopping criterion was met, then the algorithm
terminated, and the weights were considered as the best val-
ues for ANN. Else, all the parameters are updated based on
step 7.

I. EVALUATION CRITERIA

To evaluate the capability of different algorithms used for
optimizing the ANN in hydrological drought forecasting,
several statistical and graphical tests were used. Among all
statistical indices, coefficient of determination (R2), relative
absolute error (RAE), mean absolute error (MAE), root mean
squared error (RMSE), index of agreement (d), confidence
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TABLE 3. Results of ANN and hybrid models in the test stage.

Ml M2 M3 M4 M5 M6
RMSE R? RMSE R? RMSE  R? RMSE  R? RMSE R? RMSE R?
SSA 0.81 04 07 041 082 034 0.84 031 085 039 075 0.46
BBO 0.8 041 072 04 079 04 098 0.17 08 048 0.73 0.48
Statel PSO 0.8 039 0.75 035 0.88 036 092 03 067 056 0.77 0.45
GOA 0.9 038 0.75 04 091 034 093 021 08 045 0.75 0.41
ANN 0.92 038 08 036 092 0.3 125 0.1 09 024 0.75 0.48
I ssA |« 078 051 08 046 08 054 091 035 08 045 053 079
BBO 0.67 057 08 0.44 088 0.51 098 032 0.76 0.54 0.64 0.78
State2 PSO 0.8 055 058 068 0.72 0.56 0.82 043 08 051 072 0.73
GOA 0.61 062 082 052 093 031 093 035 0.89 049  0.66 0.71
ANN 0.95 044 08 049 08 049 101 025 09 049 08 0.66
I SSA |« 08 058 078 0.5 081 049 074 043 081 046 065 077
BBO 0.82 0.54 081 045 062 063 081 041 0.79 051 052 0.79
State3 PSO 0.89 0.48 0.82 0.48 0.79 0.49 085 034 0.79 05 045 0.81
GOA 0.79 0.56 0.79 0.53 0.71 055 073 048 081 043  0.79 0.61
ANN 0.87 044 038 047 085 047 09 036 038 047 08 0.64
M7 M8 M9 MI10 Mi1 Mi12
RMSE R? RMSE R? RMSE R? RMSE  R? RMSE  R? RMSE R?
SSA 0.98 0.12 086 029 0.77 045 047 047 059 0.69 045 0.71
BBO 0.97 0.14 086 03 069 0.46  0.55 0.57 0.6l 0.7 044 0.72
Statel PSO 0.96 0.15 08 032 085 036 0.55 0.55 0.59 0.67 045 0.79
GOA 0.99 0.14 085 033 086 034 0.62 0.46  0.63 0.57 057 0.74
ANN 125 0.05 1.1 0.09 098 0.18 0.75 024 082 034 075 0.48
I ssA |« 096 018 08 028 074 048 054 072 054 075 046 07
BBO 0.89 028 094 031 068 05 059 0.62 057 0.63 043 0.74
State2 PSO 0.96 025 0.89 026 0.71 047 06 0.62 057 0.69 04 0.82
GOA 0.93 0.18 0.87 022 086 037 061 052 0.74 039 058 0.69
ANN 1.1 007 1 0.11 09 024 082 034 08 047 063 0.65
___________ SSA | 0.89 02 089 023 072 046 061 059 057 0.66  0.54 0.8
BBO 0.98 023 085 025 0.73 047 06 06 056 0.64 052 0.81
State3 PSO 0.99 027 075 036 072 043 061 0.62 057 0.67 045 0.8
GOA 0.99 021 0.75 032 0.74 043  0.63 053 06 06 042 0.77
ANN L13 012 LI 025 085 038 08 047 081 044 074 0.52

index (CI) and Nash—Sutcliffe coefficient (NSE) are used.
A detailed description of these indices was presented by
Dehghani et al. [5]. Also, scatter plot, box plot of prediction
and observations and errors and error distribution are used to
evaluate the performance of each algorithm in hydrological
drought forecasting. Also, RDR index which proposed by
Memarzadeh ef al. [47] was utilized for model performance
evaluation.

RDR = Sign(Estimated K

Estimated K,
Measured K,
Also, Wilcoxon and Freidman tests were utilized to evaluate

the equality of mean in the observed and forecasted time
series.

— Measured K,) |log
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Ill. RESULTS

In this section, the performance of customary ANN and the
hybrid of ANN with SSA, BBO, PSO, and GOA optimization
algorithms were discussed.

A. SPI AND SHDI CALCULATION

After conducting the non-parametric tests on the data to
evaluate the quality of data and filling the gaps, the average
of precipitation was estimated using the Kriging method.
Then, several probability distribution functions were fitted
to the precipitation and discharge time series. Gamma and
Log-normal functions were selected as the best fit for SPI
and SHDI, respectively. In the next step, 36 input-output
combinations were prepared for modeling.
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B. COMPARISON OF NEW HYBRIDIZED MODELS WITH
THE CONVENTIONAL ANN

The quantitative results of hybridized models and conven-
tional ANN are presented in Table 3. Also, the best results
for M1 to M12 were bolded in the table. The results could
be compared in several aspects. Based on the states, just
one of the best-hybridized models lies in state 1, while
7 and 4 best models lay in state 2 and state 3, respectively.
For conventional ANN, 5 and 7 best models were laid in
state 2 and state 3, respectively. It shows that state 1 is not
suitable for modeling. It means that although the SHDI has
a strong correlation with its previous lags, it is not only a
function of its previous values. Other factors such as pre-
cipitation or meteorological drought, which happens before
hydrological drought joint with SHDI in previous lags, can
improve the results considerably. Also, precipitation jointed
with SHDI values in previous months are better predictors
for SHDI forecasting than SPI jointed with SHDI, especially
in hybridized models. A precise evaluation shows that for
M1 to M3, the best models are mostly in state 2. It means
that to forecast the hydrological drought in a monthly time
scale, which represents as SHDI, precipitation, and SHDI in
previous months are the best inputs. For M4 to M6, two of
the best models are in state 3, and one of them is in state 1.
So, it is possible to say that for SHDI3 forecasting, state 3,
which contains SPI and SHDI in previous steps as input, is the
best. For M7 to M12, five of the best models are in state 2,
which shows the same as M1 to M3, precipitation, and SHDI
in previous months are the best inputs.

Results of Table 3 indicate that hybridized models are supe-
rior to the conventional ANN in all states and M1 to M12. The
RMSE and R2 were improved between 0.1 and 0.2 in almost
all input-output combinations. It means that the hybridizing
ANN with nature-inspired optimization algorithms strongly
enhances the results.

Based on Table 3, it is possible to compare the optimization
algorithm for hydrological drought forecasting. SSA, BBO,
PSO, and GOA algorithms hybridizing with ANN produced
the best results in 2, 3, 5, and 2 cases for M1 to M12,
respectively. According to this fact, PSO is superior to others.
SSA performed as the best algorithm in M10 and M11,
BBO produced the best results in M3, M7 and M9, PSO
in M2, M5, M6, M8 and M12 and GOA in M1 and M4.
So, SSA is the best for SHDI6 forecasting while BBO for
SHDI1 and SHDI6, GOA for SHDI1 and SHDI3 and PSO for
all of them. Again it can be concluded that PSO is the best
algorithm to hybridize with ANN for hydrological drought
forecasting.

Finally, it is possible to evaluate the input combinations in
hydrological drought forecasting. Based on Table 3, M1 to
M3 were used to forecast SHDI1 while M4 to M6 and M7 to
M12 were used to forecast SHDI3 and SHDI®6, respectively.
Based on the results in Table 3, M2 in state 2 performed as the
best model to forecast SHDI1. It shows that the precipitation
and SHDI in the previous one and two months are the best
predictors for SHDI1 forecasting. M6 in state 3 shows the best
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TABLE 4. Results of Friedman and Wilcoxon tests.

p-value
Model Ml M2 M3 M4 M5 M6

Wilcoxon 0.41 062 0.66 0.54 0003 0.05
Friedman 1 001 086 043 0005 029
p-value

Model M7 M8 M9 MI0 M1l MI2
Wilcoxon 033 0.05 099 098 006 0.23
Friedman 0.18 0.09 0.66 066 00! 0.37

performance for SHDI3 forecasting. So, the SPI and SHDI
values in the previous three months are the best predictor
for SHDI3 forecasting. However, it is worthy to note that the
results of M4 in state 3 are more valuable than the results of
M6 in some aspects.

First, the model needs two predictors while in M6,
the model needs six predictors. Also, in M4, the SPI and
SHDI values of three months ago are the predictors, which
it means that the model forecast SHDI for one season ahead.
However, M6 uses the SHDI3 values in the last month as the
predictor, which means that generally, 2/3 of the information
that must be forecasted is available in predictors. Based on
these facts, M6 results are more precise, while M4 results are
more valuable. This is the fact that it is true for M7 to M12.
M12 in state 3 is the most accurate model, while the results
of M7 are more valuable.

The observed and forecasted time series in the test stage
were plotted in Figure 5. According to Figure 5, in M1 to
M12, the models are capable of recognizing the pattern,
and the observed and forecasted time series changes with
the same pattern. However, none of the models are capable
of forecasting the exact extreme values. Among all, M1,
MI11 and M12 had the best performance, and the observed
and predicted values are in general agreement even in extreme
values.

While the statistical indices are promising and the plots
of observed and forecasted time series showed a general
agreement between the observed and forecasted SHDI values,
however, it is needed to examine the results with statistical
tests to ensure the robustness of the modeling. For this pur-
pose, Wilcoxon test and Friedman test were utilized. Results
were presented in Table 4.

Based on the results of Table 4, except M5 model, the null
hypothesis (1 = pu7) was accepted at least in one of the
test which means that the mean of observed and forecasted
values have no meaningful difference. However, the null
hypothesis was rejected in both tests for M5, which shows the
meaningful difference in the mean of observed and forecasted
time series. So, although M5 has acceptable R2 and RMSE,
but there is a significant difference between the mean of
observed and forecasted SHDI values reproduced using M5
model. So, besides the statistical indices such as R2 and
RMSE, it is necessary to examine the results using statistical
tests.
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FIGURE 5. Time series of observed and forecasted SHDI using the
hybridized models in the test stage.

The box plot of observed and forecasted values using ANN
and hybrid models were plotted in Figure 6. In the state 1, all
hybrid models performed better than ANN, especially in wet
conditions (SHDI > 1).

The mean in hybrid models is the same as the mean of
observations, and the positive values of SHDI were repro-
duced almost the same as observed values. However, none
of the hybrid models were capable of reproducing drought
conditions appropriately.

Generally, M2 performed better in state 1. Also, in state 2,
the hybrid models performed better than conventional ANN.
Among all, M6 is capable of reproducing both negative
and positive values of SHDI while M4 and M5 could not
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FIGURE 6. Box plot of observed and forecasted SHDI using the hybridized
models in the test stage.

reproduce the extreme values. In the state 3, also, the hybrid
models performed far better than ANN. None of the mod-
els reproduce the extreme drought condition, but M11 and
M12 were superior. In the next step, the boxplot of error for all
models was plotted and presented in Figure 7. In the state 1,
M2 has the least error while in state 2 and state 3, M6 and
ANNG and M12 have the least error, respectively.
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FIGURE 7. Box plot of error in forecasting SHDI using the hybridized
models in the test stage.

The RDR was calculated and plotted in Figure 8. Based
on Figure 9, the error normally distributed in M1 to M3,
which shows that generally, the models overestimation and
underestimation are somehow the same. In the state 1, M2 has
the least normalized error, which shows the superiority of
the model. Also, in state 2, M6 is superior, while the error
normally distributed in M4 to M6. In the state 3, the least
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FIGURE 8. Standardized normal distribution graph of the RDR values for
the SHDI forecasting in the test phase.

error assigned to M9, M8, and M7, respectively. However,
M9 has underestimation while M8 and M7 have overes-
timation. In the next step, M11 and M12 have the least
error, respectively, and the error normally distributed, which
resulted in similar overestimation and underestimation.

The empirical cumulative distribution function for M1 to
M12 was plotted in Figure 9. In the state 1, all three models
performed nearly the same, while M2 has the least error. State
2 and 3 show that M6 and M12 reproduce the SHDI3 and
SHDI6 with the least error, respectively. It means that with a
given threshold error level, the performance of M6 and M 12 is
higher than the other models.

Finally, the number of class changes in the forecasting
time series compared to the observed values calculated and
tabulated in Table 5. For state 1, the models forecasted the
correct class in more than 76%. Among all, M2 was the best,
which forecasted the accurate classes in 82%, and 17% of
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TABLE 5. Number of exact forecast and class change in test stage using hybridized models.
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FIGURE 9. The threshold statistic of selected models.

forecasted SHDI1 have one class change compared to the
observed data. In the state 2, M6 is superior with 74% of
exact forecasting, while for state 3, M12 with 79% of exact
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Model glr::nge class Sﬁgnge classes g;:jge classes Exact forecast | Exact forecast (%) g;)a)ss change
Ml 22 6 0 102 78 22
M2 12 9 3 106 82 18
M3 21 7 3 99 76 24
M4 33 8 2 86 67 33
M5 34 6 3 86 67 33
M6 30 3 0 95 74 26
M7 25 10 6 86 68 32
M8 34 6 3 84 66 34
M9 19 12 1 95 75 25
M10 28 8 2 89 70 30
Mi1 26 7 1 93 73 27
Mi12 25 1 0 100 79 21
forecasting performed better than other models. Based on the
100 o Statel different statistical and graphical analysis, it can be concluded
g::so P i that among all models, M2, M6 and M12 are superior in
§60 state 1, state 2 and state 3, respectively.
EA —— M1
£10 M2 IV. CONCLUSION
%20 | M3 In this research, short term hydrological drought was fore-
2.4 ‘ ‘ ‘ ‘ ‘ casted using conventional ANN and hybridized of ANN with
5 0 400 800 1200 1600 2000 nature—inspired optimization algorithms. FOI" thlS purpose,
Treshold Error Level (%) SSA, BBO, PSO and GOA algorithms were utilized. To fore-
cast the hydrological drought, SHDI was calculated in 1,
3 and 6 months time scales. Precipitation, SHDI and SPI
Koo State 2 values in the previous months were used as the predictors
Too | AT based on cross-correlation analysis. Results indicated that the
%,’60 :_:: hybridized models are far superior to the conventional ANN,
& a4 and these models are capable of forecasting the hydrological
§4° E s drought in different time scales. Based on the results, SHDI
FRU E::/ - values in the previous month(s) are not suitable inputs for
§ 0 - : : : o TA—Ms hydrological drought forecasting, and other parameters such
0 400 800 1200 1600 2000 as SPI and especially the precipitation in the previous months
Treshold Error Level (%) can improve the results of forecasting considerably. Also,

among all optimization algorithms, PSO outperformed in
hybridizing with ANN, and the ANN-PSO was capable of
forecasting SHDI in all time scales. It is worthy to note that
for SHDI®, it is impossible to accurately forecast the SHDI
using M7, M8, M9 and M10. It means that the hydrological
drought in this basin varies in short time, and the information
of SHDI in the last two months plays a substantial role in
SHDI6 forecasting. For future research, the hybrid models
of other machine learning methods with nature-inspired opti-
mization algorithms are particularly encouraged.
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