3 research outputs found

    How Biophysical Forces Regulate Human B Cell Lymphomas

    No full text
    Summary: The role of microenvironment-mediated biophysical forces in human lymphomas remains elusive. Diffuse large B cell lymphomas (DLBCLs) are heterogeneous tumors, which originate from highly proliferative germinal center B cells. These tumors, their associated neo-vessels, and lymphatics presumably expose cells to particular fluid flow and survival signals. Here, we show that fluid flow enhances proliferation and modulates response of DLBCLs to specific therapeutic agents. Fluid flow upregulates surface expression of B cell receptors (BCRs) and integrin receptors in subsets of ABC-DLBCLs with either CD79A/B mutations or WT BCRs, similar to what is observed with xenografted human tumors in mice. Fluid flow differentially upregulates signaling targets, such as SYK and p70S6K, in ABC-DLBCLs. By selective knockdown of CD79B and inhibition of signaling targets, we provide mechanistic insights into how fluid flow mechanomodulates BCRs and integrins in ABC-DLBCLs. These findings redefine microenvironment factors that regulate lymphoma-drug interactions and will be critical for testing targeted therapies. : Apoorva et al. report a lymphoma micro-reactor to understand biophysical factors that regulate lymphoma growth and their therapeutic responses. They describe the role of fluid forces, from lymphatics and neo-vessels, in mechanomodulation of integrin and B cell receptor signaling. These insights shed light on the heterogeneous nature of lymphomas and may allow faster translation of therapeutics. Keywords: signaling, chemotherapy, B cell receptor, fluid, shear stress, mutation, integrin, mechanomodulation, lymph node, lymphatic

    Profiling Germinal Center-like B Cell Responses to Conjugate Vaccines Using Synthetic Immune Organoids

    No full text
    Glycoengineered bacteria have emerged as a cost-effective platform for rapid and controllable biosynthesis of designer conjugate vaccines. However, little is known about the engagement of such conjugates with naı̈ve B cells to induce the formation of germinal centers (GC), a subanatomical microenvironment that converts naı̈ve B cells into antibody-secreting plasma cells. Using a three-dimensional biomaterials-based B-cell follicular organoid system, we demonstrate that conjugates triggered robust expression of hallmark GC markers, B cell receptor clustering, intracellular signaling, and somatic hypermutation. These responses depended on the relative immunogenicity of the conjugate and correlated with the humoral response in vivo. The occurrence of these mechanisms was exploited for the discovery of high-affinity antibodies against components of the conjugate on a time scale that was significantly shorter than for typical animal immunization-based workflows. Collectively, these findings highlight the potential of synthetic organoids for rapidly predicting conjugate vaccine efficacy as well as expediting antigen-specific antibody discovery
    corecore