38 research outputs found

    Progenitor Cell Therapy for the Treatment of Central Nervous System Injury: A Review of the State of Current Clinical Trials

    Get PDF
    Recent preclinical work investigating the role of progenitor cell therapies for central nervous system (CNS) injuries has shown potential neuroprotection in the setting of traumatic brain injury (TBI), spinal cord injury (SCI), and ischemic stroke. Mechanisms currently under investigation include engraftment and transdifferentiation, modulation of the locoregional inflammatory milieu, and modulation of the systemic immunologic/inflammatory response. While the exact mechanism of action remains controversial, the growing amount of preclinical data demonstrating the potential benefit associated with progenitor cell therapy for neurological injury warrants the development of well-controlled clinical trials to investigate therapeutic safety and efficacy. In this paper, we review the currently active or recently completed clinical trials investigating the safety and potential efficacy of bone marrow-derived progenitor cell therapies for the treatment of TBI, SCI, and ischemic stroke. Our review of the literature shows that while the preliminary clinical trials reviewed in this paper offer novel data supporting the potential efficacy of stem/progenitor cell therapies for CNS injury, a great deal of additional work is needed to ensure the safety, efficacy, and mechanisms of progenitor cell therapy prior to widespread clinical trials

    Hydrostatic intestinal edema induced signaling pathways: potential role of mechanical forces.

    Get PDF
    BACKGROUND: Hydrostatic intestinal edema initiates a signal transduction cascade that results in smooth muscle contractile dysfunction. Given the rapid and concurrent alterations in the mechanical properties of edematous intestine observed with the development of edema, we hypothesize that mechanical forces may serve as a stimulus for the activation of certain signaling cascades. We sought to examine whether isolated similar magnitude mechanical forces induced the same signal transduction cascades associated with edema. METHODS: The distal intestine from adult male Sprague Dawley rats was stretched longitudinally for 2 h to 123% its original length, which correlates with the interstitial stress found with edema. We compared wet-to-dry ratios, myeloperoxidase activity, nuclear signal transduction and activator of transcription (STAT)-3 and nuclear factor (NF)-kappa B DNA binding, STAT-3 phosphorylation, myosin light chain phosphorylation, baseline and maximally stimulated intestinal contractile strength, and inducible nitric oxide synthase (iNOS) and sodium hydrogen exchanger 1-3 messenger RNA (mRNA) in stretched and adjacent control segments of intestine. RESULTS: Mechanical stretch did not induce intestinal edema or an increase in myeloperoxidase activity. Nuclear STAT-3 DNA binding, STAT-3 phosphorylation, and nuclear NF-kappa B DNA binding were significantly increased in stretched seromuscular samples. Increased expression of sodium hydrogen exchanger 1 was found but not an increase in iNOS expression. Myosin light chain phosphorylation was significantly decreased in stretched intestine as was baseline and maximally stimulated intestinal contractile strength. CONCLUSION: Intestinal stretch, in the absence of edema/inflammatory/ischemic changes, leads to the activation of signaling pathways known to be altered in intestinal edema. Edema may initiate a mechanotransductive cascade that is responsible for the subsequent activation of various signaling cascades known to induce contractile dysfunction

    Access to

    Get PDF
    Recent preclinical work investigating the role of progenitor cell therapies for central nervous system (CNS) injuries has shown potential neuroprotection in the setting of traumatic brain injury (TBI), spinal cord injury (SCI), and ischemic stroke. Mechanisms currently under investigation include engraftment and transdifferentiation, modulation of the locoregional inflammatory milieu, and modulation of the systemic immunologic/inflammatory response. While the exact mechanism of action remains controversial, the growing amount of preclinical data demonstrating the potential benefit associated with progenitor cell therapy for neurological injury warrants the development of well-controlled clinical trials to investigate therapeutic safety and efficacy. In this paper, we review the currently active or recently completed clinical trials investigating the safety and potential efficacy of bone marrowderived progenitor cell therapies for the treatment of TBI, SCI, and ischemic stroke. Our review of the literature shows that while the preliminary clinical trials reviewed in this paper offer novel data supporting the potential efficacy of stem/progenitor cell therapies for CNS injury, a great deal of additional work is needed to ensure the safety, efficacy, and mechanisms of progenitor cell therapy prior to widespread clinical trials

    Intravenous multipotent adult progenitor cell therapy after traumatic brain injury: modulation of the resident microglia population

    Get PDF
    INTRODUCTION: We have demonstrated previously that the intravenous delivery of multipotent adult progenitor cells (MAPC) after traumatic brain injury affords neuroprotection via interaction with splenocytes, leading to an increase in systemic anti-inflammatory cytokines. We hypothesize that the observed modulation of the systemic inflammatory milieu is related to T regulatory cells and a subsequent increase in the locoregional neuroprotective M2 macrophage population. METHODS: C57B6 mice were injected with intravenous MAPC 2 and 24 hours after controlled cortical impact injury. Animals were euthanized 24, 48, 72, and 120 hours after injury. In vivo, the proportion of CD4(+)/CD25(+)/FOXP3(+) T-regulatory cells were measured in the splenocyte population and plasma. In addition, the brain CD86(+) M1 and CD206(+) M2 macrophage populations were quantified. A series of in vitro co-cultures were completed to investigate the need for direct MAPC:splenocyte contact as well as the effect of MAPC therapy on M1 and M2 macrophage subtype apoptosis and proliferation. RESULTS: Significant increases in the splenocyte and plasma T regulatory cell populations were observed with MAPC therapy at 24 and 48 hours, respectively. In addition, MAPC therapy was associated with an increase in the brain M2/M1 macrophage ratio at 24, 48 and 120 hours after cortical injury. In vitro cultures of activated microglia with supernatant derived from MAPC:splenocyte co-cultures also demonstrated an increase in the M2/M1 ratio. The observed changes were secondary to an increase in M1 macrophage apoptosis. CONCLUSIONS: The data show that the intravenous delivery of MAPC after cortical injury results in increases in T regulatory cells in splenocytes and plasma with a concordant increase in the locoregional M2/M1 macrophage ratio. Direct contact between the MAPC and splenocytes is required to modulate activated microglia, adding further evidence to the central role of the spleen in MAPC-mediated neuroprotection

    Outcomes of truncal vascular injuries in children.

    Get PDF
    BACKGROUND: Pediatric truncal vascular injuries occur infrequently and have a reported mortality rate of 30% to 50%. This report examines the demographics, mechanisms of injury, associated trauma, and outcome of patients presenting for the past 10 years at a single institution with truncal vascular injuries. METHODS: A retrospective review (1997-2006) of a pediatric trauma registry at a single institution was undertaken. RESULTS: Seventy-five truncal vascular injuries occurred in 57 patients (age, 12 +/- 3 years); the injury mechanisms were penetrating in 37%. Concomitant injuries occurred with 76%, 62%, and 43% of abdominal, thoracic, and neck vascular injuries, respectively. Nonvascular complications occurred more frequently in patients with abdominal vascular injuries who were hemodynamically unstable on presentation. All patients with thoracic vascular injuries presenting with hemodynamic instability died. In patients with neck vascular injuries, 1 of 2 patients who were hemodynamically unstable died, compared to 1 of 12 patients who died in those who presented hemodynamically stable. Overall survival was 75%. CONCLUSIONS: Survival and complications of pediatric truncal vascular injury are related to hemodynamic status at the time of presentation. Associated injuries are higher with trauma involving the abdomen

    EVIDENCE-BASED CLINICAL MEDICINE Current Role of Magnetic Resonance Imaging in Breast Imaging: A Primer for the Primary Care Physician

    No full text
    Magnetic resonance imaging (MRI) is Magnetic resonance imaging (MRI) has revolutionized many areas of body imaging. As a noninvasive, nonirradiating imaging tool, interest has steadily been developing as to the specific role of MRI in breast imaging, and whether this modality can assist with early detection and hopefully subsequently decrease the mortality of breast cancer. Mammography has long been used for early detection of and screening for breast cancers. With optimal technique and patient conditions, it has a reported sensitivity between 69% and 90% and a specificity between 10% and 40%. Many factors, including density of breast tissue (ie, younger patients, implants, and post surgical state) can affect these values. Ultrasound has been used as an adjunct to mammography, with particular value in differentiating cystic from solid lesions and in facilitating guided biopsy of suspicious areas. However, ultrasound has limitations, including the possibility of missing microcalcifications [associated with ductal carcinoma in situ (DCIS)] and difficulty in ensuring that the entire breast was imaged with the transducer

    Progenitor cell therapies for traumatic brain injury: barriers and opportunities in translation.

    No full text
    Traumatic brain injury (TBI) directly affects nearly 1.5 million new patients per year in the USA, adding to the almost 6 million cases in patients who are permanently affected by the irreversible physical, cognitive and psychosocial deficits from a prior injury. Adult stem cell therapy has shown preliminary promise as an option for treatment, much of which is limited currently to supportive care. Preclinical research focused on cell therapy has grown significantly over the last decade. One of the challenges in the translation of this burgeoning field is interpretation of the promising experimental results obtained from a variety of cell types, injury models and techniques. Although these variables can become barriers to a collective understanding and to evidence-based translation, they provide crucial information that, when correctly placed, offers the opportunity for discovery. Here, we review the preclinical evidence that is currently guiding the translation of adult stem cell therapy for TBI

    Endoscopic removal of eroded adjustable gastric band in a pregnant patient

    No full text
    Complications of the laparoscopic adjustable gastric band, including erosion, have been well described. Increasingly, endoscopic techniques are being utilized to manage complications of this and other weight loss procedures. The authors presented what was believed to be one of the first reported cases of successful endoscopic removal of an eroded gastric band during pregnancy. A complete description of the case and review of the relevant literature is provided. Endoscopy for management of eroded adjustable gastric bands needs to be part of the armamentarium of surgeons and endoscopists who deal with complications of weight loss surgery

    Progenitor cells as remote bioreactors : Neuroprotection via modulation of the systemic inflammatory response.

    No full text
    Acute central nervous system (CNS) injuries such as spinal cord injury, traumatic brain injury, autoimmune encephalomyelitis, and ischemic stroke are associated with significant morbidity, mortality, and health care costs worldwide. Preliminary research has shown potential neuroprotection associated with adult tissue derived stem/progenitor cell based therapies. While initial research indicated that engraftment and transdifferentiation into neural cells could explain the observed benefit, the exact mechanism remains controversial. A second hypothesis details localized stem/progenitor cell engraftment with alteration of the loco-regional milieu; however, the limited rate of cell engraftment makes this theory less likely. There is a growing amount of preclinical data supporting the idea that, after intravenous injection, stem/progenitor cells interact with immunologic cells located in organ systems distant to the CNS, thereby altering the systemic immunologic/inflammatory response. Such distant cell bioreactors could modulate the observed post-injury pro-inflammatory environment and lead to neuroprotection. In this review, we discuss the current literature detailing the above mechanisms of action for adult stem/progenitor cell based therapies in the CNS
    corecore