4 research outputs found

    Complex Pyogenic Liver Abscess: Outcome of Open vs Laparoscopic Drainage

    Get PDF
    OBJECTIVES Our study aimed to evaluate the safety and efficacy of laparoscopic drainage as a management of complex pyogenic liver abscesses in comparison to open surgical drainage. METHODOLOGY The comparative research design was used to compare the outcomes, complications, perioperative morbidity, mortality, and potential recurrence of 60 patients with a complex pyogenic liver abscess who were hospitalized at the General Surgery Department of Hayatabad Medical Complex Peshawar and treated either laparoscopically or openly from January 2019 to December 2020. 30 patients had open drainage management, while 30 patients received laparoscopic drainage management. For all patients, pus was examined for culture sensitivity. Patients with a small, solitary and unilocular pyogenic liver abscess that improved with antibiotic therapy and or/and percutaneous drainage were excluded. Each patient had a thorough clinical evaluation, lab tests, ultrasound, computed tomography, or magnetic resonance imaging of the pelvis and abdomen. RESULTS All patients underwent abdominal ultrasonography & sonographic diagnosis was made in 43(71.7%), followed by a computed tomography scan (CT) in 12(20%) & magnetic resonance imaging (MRI) diagnosis was made in 5(8.3%) patients respectively. Diabetes mellitus was present in 15(25%) patients, severe chronic obstructive pulmonary disease in 10(16.7%) and severe anemia in 9(15%) patients. All individuals associated with co-morbidity were considered high-risk patients. CONCLUSION Laparoscopic drainage of liver abscess has a shorter surgical time, lower morbidity rate, and shorter hospital stay as compared to open surgical drainage

    Incidence of Port Site Infection After Laparoscopic Cholecystectomy: Our Experience at Hayatabad Medical Complex

    Get PDF
    OBJECTIVES This study aimed to assess the factors that affect post-laparoscopic cholecystectomies PSI and determine which characteristics can be changed to prevent PSI in a trial to maximize the benefits of laparoscopic surgery.METHODOLOGY The study included all patients who experienced port site infection following laparoscopic cholecystectomy. All patients received Inj Ceftriaxone 1gm pre-operatively & then twice a day postoperatively for 03 days. In all operations, the gallbladder is removed from the epigastric port without using a retrieval bag by skilled surgeons employing four-port methods and reusable equipment. Most patients had the sub-hepatic tube drain placed and were discharged the day after surgery.RESULTSAcute cholecystitis was the most common operative finding with port-site infection, i.e. 6(42.8%), second being empyema that was seen in 3(21.4%) patients, 2(14.3%) patients had bad adhesions, mucocele in 2(14.3%) patients and thick walled gall bladder with stones was found in 1(7.1%) patients respectively, indicating that the relationship between infection and acute cholecystitis is significant. Regarding the spills of bile, stones, or pus, 3(21.4%) patients had infections despite there being no spillage, while 11(78.6%) patients developed an infection while the spillage happened during their procedures. The p-value was 0.0001, meaning that the spillage might be considered a risk factor for the development of port site infection.CONCLUSIONThe spilling of bile, stones, or pus, the port of gallbladder removal, and acute cholecystitis are all strongly associated with port site infection. Given that Mycobacterium tuberculosis may be the source of chronic deep surgical site infections, more care should be exercised. The majority of PSIs are superficial and more prevalent in men

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population.The aim of this study was to inform vaccination prioritization by modelling the impact of vaccination on elective inpatient surgery. The study found that patients aged at least 70 years needing elective surgery should be prioritized alongside other high-risk groups during early vaccination programmes. Once vaccines are rolled out to younger populations, prioritizing surgical patients is advantageous

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundFuture trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050.MethodsUsing forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline.FindingsIn the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]).InterpretationGlobally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions.FundingBill & Melinda Gates Foundation.</p
    corecore