724 research outputs found

    Rapid identification of E. coli bacteriophages using mass spectrometry

    Get PDF
    Objective: The current increasing interest in the application of mass spectrometry, in particular MALDI-TOF MS, to identification of bacteria and fungi calls for a need to utilise this technology for identification of other infectious agents such as viruses. The aim of the present study was to develop a rapid and reliable mass spectrometry-based proteomic method for identification of Escherichia coli phages. Methods: The approach was based on rapid in-solution tryptic digestion of suspensions of plaque-purified bacteriophage followed by mass spectral analysis. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and liquid chromatography – tandem mass spectrometry (LC-MS) were used to analyse the tryptic digests. Processing of tandem mass spectrometry data and interpretation of results were achieved using Mascot software and the Swiss-Prot database. Results: Five bacteriophage species (Enterobacteria phages P2, T4, T5, T7 and Lambda) isolated in E. coli cultures were identified. The viral proteins were identified from a complex mixture of host bacterial proteins. In addition, using a single ion monitoring method, a Lambda prophage derived protein was also identified. Conclusion: The data obtained demonstrate that LC-MS/MS can be used for accurate identification of E.coli- specific bacteriophages in both lytic and lysogenic cycles Keywords: Bacteriophage virus; Mass-spectrometry; Liquid chromatography; MALDI; LC-MS/MS; Lytic; Lysogenic; Enterobacteria; E.coli; Phage; Viruse

    SRL pathogenicity island contributes to the metabolism of D-aspartate via an aspartate racemase in Shigella flexneri YSH6000

    Get PDF
    In recent years, multidrug resistance of Shigella strains associated with genetic elements like pathogenicity islands, have become a public health problem. The Shigella resistance locus pathogenicity island (SRL PAI) of S. flexneri 2a harbors a 16Kbp region that contributes to the multidrug resistance phenotype. However, there is not much information about other functions such as metabolic, physiologic or ecological ones. For that, wild type S. flexneri YSH6000 strain, and its spontaneous SRL PAI mutant, 1363, were used to study the contribution of the island in different growth conditions. Interestingly, when both strains were compared by the Phenotype Microarrays, the ability to metabolize D-aspartic acid as a carbon source was detected in the wild type strain but not in the mutant. When D-aspartate was added to minimal medium with other carbon sources such as mannose or mannitol, the SRL PAI-positive strain was able to metabolize it, while the SRL PAI-negative strain did not. In order to identify the genetic elements responsible for this phenotype, a bioinformatic analysis was performed and two genes belonging to SRL PAI were found: orf8, coding for a putative aspartate racemase, and orf9, coding for a transporter. Thus, it was possible to measure, by an indirect analysis of racemization activity in minimal medium supplemented only with D-aspartate, that YSH6000 strain was able to transform the D-form into L-, while the mutant was impaired to do it. When the orf8-orf9 region from SRL island was transformed into S. flexneri and S. sonnei SRL PAI-negative strains, the phenotype was restored. Also, when single genes were cloned into plasmids, no complementation was observed. Our results strongly suggest that the aspartate racemase and the transporter encoded in the SRL pathogenicity island are important for bacterial survival in environments rich in D-aspartate

    Detection of the tau protein in human serum by a sensitive four-electrode electrochemical biosensor

    Get PDF
    This study presents a novel approach based on a four-electrode electrochemical biosensor for the detection of tau protein – one of the possible markers for the prediction of Alzheimer's disease (AD). The biosensor is based on the formation of stable antibody–antigen complexes on gold microband electrodes covered with a layer of a self-assembled monolayer and protein G. Antibodies were immobilized on the gold electrode surface in an optimal orientation by protein G interaction. Electrochemical impedance spectroscopy was used to analyze impedance change, which revealed a linear response with increasing tau concentrations. The assay is fast (<1 h for incubation and measurement) and very sensitive. The limit of quantification for the full-length 2N4R tau protein is 0.03 pM, a value unaltered when the assay was processed in bovine serum albumin or human serum. This technology could be adapted for the detection of other biomarkers to provide a multiple assay to identify AD progression in a point of care setting

    Evaluation of expression and function of the H+/myo-inositol transporter HMIT;

    Get PDF
    BACKGROUND: The phosphoinositide (PIns) signalling pathway regulates a series of neuronal processes, such as neurotransmitter release, that are thought to be altered in mood disorders. Furthermore, mood-stabilising drugs have been shown to inhibit key enzymes that regulate PIns production and alter neuronal growth cone morphology in an inositol-reversible manner. Here, we describe analyses of expression and function of the recently identified H+/myo-inositol transporter (HMIT) investigated as a potential regulator of PIns signalling. RESULTS: We show that HMIT is primarily a neuronal transporter widely expressed in the rat and human brain, with particularly high levels in the hippocampus and cortex, as shown by immunohistochemistry. The transporter is localised at the Golgi apparatus in primary cultured neurones. No HMIT-mediated electrophysiological responses were detected in rat brain neurones or slices; in addition, inositol transport and homeostasis were unaffected in HMIT targeted null-mutant mice. CONCLUSION: Together, these data do not support a role for HMIT as a neuronal plasma membrane inositol transporter, as previously proposed. However, we observed that HMIT can transport inositol triphosphate, indicating unanticipated intracellular functions for this transporter that may be relevant to mood control
    • …
    corecore