261 research outputs found

    Development and optimization of nanoparticles loaded with erucin, a dietary isothiocyanate isolated from Eruca sativa: Antioxidant and antiproliferative activities in ehrlich-ascites carcinoma cell line

    Get PDF
    The study on Erucin (ER) has gained interest of nutraceutical and pharmaceutical industries because of its anti-cancer properties. Erucin is an isothiocyanate obtained from the seeds of Eruca sativa which possess certain drawbacks such as poor aqueous solubility and bioavailability. Therefore, the present study aimed at developing ER-cubosomes (CUB) by solvent evaporation technique followed by applying Central Composite Design to optimize ER loaded cubosomes. For this purpose, independent variables selected were Monoolein (MO) as lipid and Pluronic-84 (P-84) as a stabilizer whereas dependent variables were particle size, percentage of ER loading and percentage of its entrapment efficiency. The cubosomal nanocarriers exhibited particle size in the range of 26 nm, entrapment efficiency of 99.12 ± 0.04% and drug loading of 3.96 ± 0.0001%. Furthermore, to investigate the antioxidant potential, we checked the effect of ER and ER-CUB by DNA nicking assay, DDPH assay and Phosphomolybdate assay, and results showed significant improvement in antioxidant potential for ER-CUB than ER. Similarly, ER-CUB showed enhanced anticancer activity with a marked reduction in IC50 value than ER in MTT assay. These results suggested that ER-CUB produced notable escalation in antioxidant potential and enhanced anticancer activity than ER

    Soil degradation processes under agriculture and the practices to reverse the degradation processes for environmental sustainability

    Get PDF
    The aim of this review paper is to understand more about soil degradation process under global agriculture and the practices to reverse the degradation process for environmental sustainability. The data and relevant information have been collected from a range of printed and online sources which then represented to fulfill the aim of this review paper. The overall economic growth of an agro-based country depends on the sustainable agricultural ecosystem in connection with the proper management of agricultural soil. Soil degradation is a global crisis that affects the world food economy in terms of improper agricultural practices. The huge population pressure in the developing countries, inequity and poverty in some parts of the world have influenced the farmers for increasing the cultivable land connected to agricultural production. Therefore, the degradation rate in agricultural soil has significantly increased both in developed and developing countries. The EU (European Union) in 2012 has identified eight different threats reducing normal function of the soils. These threats are water and wind erosion, reduction of soil organic matter (SOM), contamination, sealing, compaction, loss of soil biodiversity, salinisation, landslides and floods, desertification and acidification. However, The concept of conservation agriculture (CA) and organic farming are the major issues of the practices to reverse the degradation process of soil although some others practices such as ridge tillage, contour farming, sub-soiling, intercropping, grasslands, agro-forestry, conservation buffers and terracing have been proved beneficial directly in the field. However, improvement and amendment of many suggested technologies considering the adaptation to local physiographic and climatic conditions should be reconsidered soon. Political commitment and government willingness are also important issues for the practices of soil conservation under agriculture. Also, policy makers should be aware of giving emphasis on policy formulation to practice sustainable agriculture in the world because sound soil management policies could be the ways of proper solution to reverse the soil degradation processes under agriculture to ensure environmental sustainability

    Identification of new key genes and their association with breast cancer occurrence and poor survival using in silico and in vitro methods

    Get PDF
    Breast cancer is one of the most prevalent types of cancer diagnosed globally and continues to have a significant impact on the global number of cancer deaths. Despite all efforts of epidemiological and experimental research, therapeutic concepts in cancer are still unsatisfactory. Gene expression datasets are widely used to discover the new biomarkers and molecular therapeutic targets in diseases. In the present study, we analyzed four datasets using R packages with accession number GSE29044, GSE42568, GSE89116, and GSE109169 retrieved from NCBI-GEO and differential expressed genes (DEGs) were identified. Protein–protein interaction (PPI) network was constructed to screen the key genes. Subsequently, the GO function and KEGG pathways were analyzed to determine the biological function of key genes. Expression profile of key genes was validated in MCF-7 and MDA-MB-231 human breast cancer cell lines using qRT-PCR. Overall expression level and stage wise expression pattern of key genes was determined by GEPIA. The bc-GenExMiner was used to compare expression level of genes among groups of patients with respect to age factor. OncoLnc was used to analyze the effect of expression levels of LAMA2, TIMP4, and TMTC1 on the survival of breast cancer patients. We identified nine key genes, of which COL11A1, MMP11, and COL10A1 were found up-regulated and PCOLCE2, LAMA2, TMTC1, ADAMTS5, TIMP4, and RSPO3 were found down-regulated. Similar expression pattern of seven among nine genes (except ADAMTS5 and RSPO3) was observed in MCF-7 and MDA-MB-231 cells. Further, we found that LAMA2, TMTC1, and TIMP4 were significantly expressed among different age groups of patients. LAMA2 and TIMP4 were found significantly associated and TMTC1 was found less correlated with breast cancer occurrence. We found that the expression level of LAMA2, TIMP4, and TMTC1 was abnormal in all TCGA tumors and significantly associated with poor survival.Indian Council of Medical Research | Ref. BMI/11/(35)/2020MICINN | Ref. RYC-2017-2289

    Nickel ferrite nanoparticles induced improved fungal cellulase production using residual algal biomass and subsequent hydrogen production following dark fermentation

    Get PDF
    The present study reports nickel ferrite nanoparticles (NiFe2O4 NPs) induced enhanced production of crude cellulase enzyme using residual algal biomass of cyanobacteria Lyngbya limnetica as substrate. It is noticed that the residual algal substrate and NiFe2O4 NPs mediated crude cellulase exhibits nearly 2.5 fold enhanced filter paper activity after 72 h along with better efficiency in terms of pH and thermal stability as compared to the control system. Further, NiFe2O4 NPs mediated crude cellulase enzyme was employed for the enzymatic hydrolysis of rice straw to produce sugar hydrolyzate. Subsequently, using bacterial strains Bacillus subtilisPF_1 the cumulative hydrogen ~ 1820 mL/L has been produced under the dark fermentation.</p

    Luteolin inhibits proliferation, triggers apoptosis and modulates Akt/mTOR and MAP kinase pathways in HeLa cells

    Get PDF
    Flavonoids, a subclass of polyphenols, have been shown to be effective against several types of cancer, by decreasing proliferation and inducing apoptosis. Therefore, the aim of the present study was to assess the anti-carcinogenic potential of luteolin on HeLa human cervical cancer cells, through the use of a cell viability assay, DNA fragmentation assay, mitochondrial membrane potential assay, cell cycle analysis using Annexin/PI staining and flow cytometry, gene expression analysis and a protein profiling array. Luteolin treatment exhibited cytotoxicity towards HeLa cells in a dose- and time-dependent manner, and its anti-proliferative properties were confirmed by accumulation of luteolin-treated cells in sub-G1 phases. Cytotoxicity induced by luteolin treatment resulted in apoptosis, which was mediated through depolarization of the mitochondrial membrane potential and DNA fragmentation. Furthermore, luteolin treatment increased the expression of various proapoptotic genes, including APAF1, BAX, BAD, BID, BOK, BAK1, TRADD, FADD, FAS, and Caspases 3 and 9, whereas the expression of anti-apoptotic genes, including NAIP, MCL-1 and BCL-2, was decreased. Cell cycle regulatory genes, including CCND1, 2 and 3, CCNE2, CDKN1A, CDKN2B, CDK4 and CDK2, were decreased following treatment. Expression of TRAILR2/DR5, TRAILR1/DR4, Fas/TNFRSF6/CD95 and TNFR1/TNFRSF1A, as well as pro-apoptotic proteins, including BAD, BAX and Cytochrome C were consistently increased, and the expression of antiapoptotic proteins, HIF1α, BCL-X, MCL1 and BCL2, were found to be decreased following treatment. Expression of AKT1 and 2, ELK1, PIK3C2A, PIK3C2B, MAPK14, MAP3K5, MAPK3 and MAPK1 was significantly decreased at the transcriptional level. Expression of GSK3b (p-ser9), PRAS 40 (p-Ther246), BAD (p-ser112), PTEN (p-ser380), AKT (p-ser473), ERK2 (p-Y185/Y187), RISK2 (p-ser386), P70S6k (p-Thr421/ser424), PDK1(p-ser241), ERK1 (p-T202/Y204) and MTOR (p-ser2448) was downregulated and expression of P53 (p-ser241) and P27(p-Thr198) was upregulated by luteolin in a dose-dependent manner, indicating its anti-proliferative and apoptosis enabling properties, and this may have been mediated via inhibition of the AKT and the MAPK pathways. © 2021 Spandidos Publications. All rights reserved

    Simple, reliable, and time-efficient colorimetric method for the assessment of mitochondrial function and toxicity

    Get PDF
    Mitochondria are organelles involved in the production of cellular energy, regulation of Ca2+ and redox signaling, and are critical for normal functioning of eukaryotic cells. The dysfunction of mitochondria has been implicated in a wide range of diseases, including metabolic and neurodegenerative disorders and different types of cancers. To better understand the role of mitochondria in healthy and disease states, the development of efficient and reliable tools for the assessment of mitochondrial function is particularly important. Janus green B (JG-B) is a supravital lipophilic cationic dye which, in its oxidized form, has a green-blue color. As JG-B is taken up and reduced by metabolically active mitochondria, the dye has been used for assessing the purity, integrity and metabolic activity of mitochondria with microscopy-based methods. Here we present a simple, time- and cost-efficient JG-B-based colorimetric assay for assessing mitochondrial function, activity and toxicity. The method is based upon reduction of JG-B by mitochondrial dehydrogenases to diethylsafranine, which is pink colored and has a maximum absorption at 550 nm. In this proof of principle study, using in vitro mitochondrial preparations isolated from rat brain, we provide evidence that monitoring JG-B conversion to diethylsafranine can be used as a reliable and robust indicator of mitochondrial activity and toxicity. Because of its simplicity and efficiency in terms of costs and time, this assay has a wide potential in analytical as well as therapeutic areas of biomedical research

    Genistein modulates signaling pathways and targets several epigenetic markers in hela cells

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. Background: Several epigenetic changes are responsible for transcriptional alterations of signaling pathways and tumour suppressor genes (TSGs) contributing to carcinogenesis. This study was aimed to examine the effect of the phytochemical, genistein on various molecular targets in HeLa cells. Methods: Quantitative PCR was used to analyze the expression of various molecular targets. Biochemical assays were employed to study the epigenetic enzymes. To correlate the transcriptional status of the selected TSGs and epigenetic modulation, their promoter 5’CpG methylation levels were evaluated by quantitative methylation array followed by methylation specific restriction digestion. Results: The expression of several genes involved in the cell cycle regulation, migration, inflammation, phosphatidylinositol 3-kinase (PI3K) and mitogen activated kinase-like protein (MAPK) pathway were found to be modulated including CCNB1, TWIST1, MMP14, TERT, AKT1, PTPRR, FOS and IL1A. Genistein modulated the expression of DNA methyltransferases (DNMTs), histone deacetylases (HDACs), histone methyltransferases (HMTs), demethylases, and histone phosphorylases. Furthermore, genistein decreased the activity of DNMTs, HDACs, and HMTs and reduced global DNA methylation levels. Promoter methylation of several TSGs, including FHIT, RUNX3, CDH1, PTEN, and SOC51, was lowered with corresponding transcriptional increase. Network analysis indicated similar effect of genistein. Conclusion: This study presents a comprehensive mechanism of action of genistein showcasing effective epigenetic modulation and widespread transcriptional changes resulting in restoration of tumour suppressor gene expression. This study corroborates the development of genistein as a candidate for anti-cancer therapy

    Library Services during COVID-19 Pandemic: A Bibliometric Analysis and knowledge Mapping

    Get PDF
    The increased usage of libraries during the Covid-19 pandemic has been well known to science communicators, but scientific communication has not evaluated the distributions of its published findings. Thus, this study intends to identify and map library services in international publishing, particularly the Scopus database during the pandemic. Sixty-four publications in the Scopus database were assessed using the bibliometric approach and fifty-seven documents are considered. To find documents from January 2020-June 2021, the author utilized keywords such as library services AND covid-19. Microsoft excels and VOSviewer software was used to analyze the result and visualize the knowledge map. The results showed that most of the papers are dealt with favorable and adoptive library services techniques, implementation of different users demands during the pandemic. The study found the most prolific authors. Rafiq, M., Batool, S. H., Ali, A. F., & Ullah, M. received a maximum of 20 citations from a single document and Michalak R., Ortiz-DĂ­az E.M., Pacheco-Mendoza J., Rysavy M.D.T., Saavedra-Alamillas C. published 2 documents each. The United States of America is ranked top to publish the scholarly publication on the Library Services during the COVID-19 related documents with 21 documents. India is in the 2nd rank with eight papers, followed by Pakistan, China, Nigeria, Peru, and South Korea. As a result, publications concerning this topic have a high likelihood of emerging. The most frequent terms used by authors are COVID-19(22.90%), library services (7.01%), academic libraries (5.61%). The shift towards advanced virtual and digital services offers more than just boosting librarians and library patrons; it serves as a move to keep the library relevant in a tech-centered society

    In silico studies reveal antiviral effects of traditional Indian spices on COVID-19

    Get PDF
    BACKGROUND: The global health emergency due to SARS-CoV-2 causing the COVID-19 pandemic emphasized the scientific community to intensify their research work for its therapeutic solution. In this study, Indian traditional spices owing to various medicinal properties were tested in silico for their inhibitory activity against SARS-CoV-2 proteins. SARS-CoV-2 spike proteins (SP) and main proteases (Mpro) play a significant role in infection development were considered as potential drug targets. METHODS: A total of 75 phytochemicals present in traditional Indian spices retrieved from the published literature and Dr. Duke\u27s Phytochemical and Ethnobotanical Database, were docked with Mpro (PDB IDs: 6YNQ), and the SP (PDB IDs: 6LXT and 6YOR). RESULTS: Through the screening process, 75 retrieved phytochemicals were docked with spike protein (PDB IDs: 6LXT and 6YOR) and main protease (PDB ID: 6YNQ) of SARS-CoV-2. Among them, myricetin, a flavonoid (rank score: 6LXT: -11.72383; 6YOR: -9.87943; 6YNQ: -11.68164) from Allium sativumL and Isovitexin, an example of flavone (rank score:6LXT: -12.14922; 6YOR: -10.19443; 6YNQ: - 12.60603) from Pimpinella anisumL were the most potent ligands against SP and Mproof SARS-CoV-2. Whereas, Astragalin from Crocus sativusL.; Rutin from Illicium verum, Oxyguttiferone from Garcinia cambogia; Scopolin from Apium graveolens L, Luteolin from Salvia officinalis, Emodin, Aloe-emodin from Cinnamomum zeylanicium and Apigenin from Allium sativumL showed better inhibition against Mpro than SP of SARS-CoV-2. The amino acid residues like SER, LYS, ASP and TYR were found playing important role in protein-ligand interactions via hydrogen bonding and Vander Waals forces. CONCLUSION: Optimal use of traditional spices in our daily meals may help fight against COVID-19. This study also paves the path for herbal drug formulation against SARS-CoV-2 after wet lab validation

    Silybin B and Cianidanol Inhibit M pro and Spike Protein of SARS-CoV-2: Evidence from in Silico Molecular Docking Studies

    Get PDF
    BACKGROUND: The main proteases (Mpro) and Spike Proteins (SP) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV-2) play a major role in viral infection development by producing several non-structural proteins (nsPs) and penetrating the host cells respectively. In this study, the potential of in silico molecular docking-based drug repositioning approach was exploited for identifying the inhibitors of Mpro and SP of SARS-CoV-2. METHODS: A total of 196 compounds including various US-FDA-approved drugs, vitamins and their analogs were docked with Mpro (PDB IDs: 6YB7 and 6Y84), and the top six ligands were further tested for ADME properties followed by docking with SP (PDB IDs: 6LXT and 6W41). RESULTS: Out of 196 compounds, binding energy (DE) of Silybin B (6YB7: DE: -11.20 kcal/mol; 6Y84: DE: -10.18 kcal/mol; 6LXT:DE: -10.47 kcal/mol; 6W41:DE: -10.96 kcal/mol) and Cianidanol (6YB7:DE: -8.85 kcal/mol; 6Y84:DE:-10.02 kcal/mol; 6LXT:DE:-9.36 kcal/mol; 6W41:DE: -9.52 kcal/mol) demonstrated better binding and ADME properties compared with the currently endeavored drugs like Hydroxychloroquine and Lopinavir. Additionally, Elliptinone, Diospyirin, SCHEMBL94263 and Fiboflavin have shown encouraging results. Fiboflavin, an immunity booster, was found to inhibit both the Mpro and spike protein of SARS-CoV-2. It was observed that amino acid residues MET6, ALA7, PHE8, PRO9, ASP295, GLY302, VAL303 and THR304 play significant roles in protein-ligand interactions through hydrogen bonds and Vander Waals forces. CONCLUSION: Silybin B and Cianidanol showed excellent binding and ADME properties compared with the currently endeavored drugs and can be exploited as therapeutic options against SARS-CoV-2 infection after experimental validation and clinical trials
    • 

    corecore