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Abstract: Breast cancer is one of the most prevalent types of cancer diagnosed globally and con-
tinues to have a significant impact on the global number of cancer deaths. Despite all efforts of
epidemiological and experimental research, therapeutic concepts in cancer are still unsatisfactory.
Gene expression datasets are widely used to discover the new biomarkers and molecular therapeutic
targets in diseases. In the present study, we analyzed four datasets using R packages with accession
number GSE29044, GSE42568, GSE89116, and GSE109169 retrieved from NCBI-GEO and differential
expressed genes (DEGs) were identified. Protein–protein interaction (PPI) network was constructed
to screen the key genes. Subsequently, the GO function and KEGG pathways were analyzed to
determine the biological function of key genes. Expression profile of key genes was validated in
MCF-7 and MDA-MB-231 human breast cancer cell lines using qRT-PCR. Overall expression level and
stage wise expression pattern of key genes was determined by GEPIA. The bc-GenExMiner was used
to compare expression level of genes among groups of patients with respect to age factor. OncoLnc
was used to analyze the effect of expression levels of LAMA2, TIMP4, and TMTC1 on the survival
of breast cancer patients. We identified nine key genes, of which COL11A1, MMP11, and COL10A1
were found up-regulated and PCOLCE2, LAMA2, TMTC1, ADAMTS5, TIMP4, and RSPO3 were
found down-regulated. Similar expression pattern of seven among nine genes (except ADAMTS5 and
RSPO3) was observed in MCF-7 and MDA-MB-231 cells. Further, we found that LAMA2, TMTC1, and
TIMP4 were significantly expressed among different age groups of patients. LAMA2 and TIMP4 were
found significantly associated and TMTC1 was found less correlated with breast cancer occurrence.
We found that the expression level of LAMA2, TIMP4, and TMTC1 was abnormal in all TCGA tumors
and significantly associated with poor survival.

Keywords: breast cancer; differentially expressed genes; down regulated genes; poor survival; up
regulated genes

1. Introduction

Breast cancer is one of the most prevalent types of cancer diagnosed globally. Its
burden has been rising over the past decades accounting for 1 in 8 cancer diagnoses
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worldwide and a total of 2.3 million new cases in both sexes combined [1,2]. Breast cancer
continues to have a significant impact on the global number of cancer deaths. Estimation
reflected that about 685,000 women died from breast cancer in 2020, corresponding to
16% or 1 in every 6 cancer deaths in women [1]. Breast cancer cases are predicted to
reach 4.4 million in 2070 [3]. The incidence of breast cancer varies around the world,
with the highest rates typically found in more developed countries [4,5]. However, the
number of breast cancer cases is also exponentially increasing in low- and middle-income
countries [6]. Breast cancer incidence is strongly linked to human development and is
higher among nations with the highest human development index [2]. In females, the
worldwide age-standardized incidence rate is estimated to be 48/100,000, ranging from
less than 30/100,000 in Sub-Saharan Africa to more than 70/100,000 in Western Europe and
North America [7]. Although the relative incidence of breast cancer is highest in the most
developed parts of the world, since less developed regions have much bigger populations
means more than half of all breast cancer cases are identified in low- and middle-income
nations, creating a significant considerable disease burden [2,7]. Despite the high incidence
of the disease, early detection and improved treatment options have led to a decrease in
breast cancer deaths in many countries. However, access to early detection and treatment
options remains a concern in low- and middle-income countries, and more efforts are
needed to address this issue.

The reported worldwide differences in the incidence of breast cancer must be viewed
in the context of the disease’s recognized risk factors. There are several risk factors that
have been associated with an increased risk of developing breast cancer. Some of the most
well-known major risk factors include older age, breast density and family history of breast
cancer, early age menarche, late age at first full-term pregnancy, shorter breastfeeding
periods, use of hormonal menopausal therapy, use of oral contraceptives, high fat dietary,
high body mass index, physical inactivity, obesity and exposure to tobacco [4,8,9]. Highest
incidence rate of breast cancer in developed countries is likely due to a combination of
factors such as an aging population, lifestyle factors, and improved access to healthcare and
cancer screening programs [10]). Increasing incidence of breast cancer in low- and middle-
income countries is likely attributed to changes in lifestyle and reproductive patterns,
such as an increase in the use of hormone replacement therapy (HRT) and a decrease in
the number of children born to women [4]. Additionally, increased urbanization and the
adoption of western lifestyles in these countries may also contribute to the rise in breast
cancer incidence [6]. It’s worth noting that having one or more of these risk factors does
not mean that a woman will develop breast cancer, and many women who develop the
disease do not have any known risk factors.

Early diagnosis and treatment are crucial for a positive outcome of any disease. The
treatment of breast cancer depends on several factors, including the stage and type of
cancer, as well as the patient’s overall health. Despite modern advances in target therapy
method, the result of treating breast cancer is still unsatisfactory. Thus, understanding
the molecular mechanisms of breast cancer progression and identifying novel potential
prognostic biomarkers and molecular targets are urgently needed. This will also give deep
insight for the diagnosis and treatment at every stage of breast cancer. Currently, in-silico
techniques followed by in-vitro or in-vivo validations are widely used to identify the key
regulatory genes and to determine their structural and relational aspects with disease [11].
This approach offers an ideal way to screen large gene expression profiles of normal and
clinical populations to understand the genomic mechanisms contributing for the develop-
ment and progression of different diseases [12]. Nowadays, high-throughput microarray
technology and bioinformatics analysis is widely used to find gene expression variations
between malignant and non-cancerous tissues, assess differentially expressed genes (DEGs),
and uncover the pathways that contribute to carcinogenesis and cancer development. New
biomarkers and therapeutic targets have been discovered from cancer-associated gene
expression profiles which showed reliable outcome in clinical studies [13–16].
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In the present study, NCBI-GEO database was accessed to retrieve four cancer-
associated gene expression profiles. These datasets were analyzed by integrated in-silico
methods to determine the DEGs associated with breast cancer. Key regulatory genes having
high correlation with sample clinical characteristics were extracted and further validated
using MCF-7 and MDA-MB-231 human breast cancer cell lines.

2. Materials and Methods
2.1. Retrieval of Datsets and Extraction of Differentially Expressed Genes (DEGs)

The NCBI-GEO (http://www.ncbi.nlm.nih.gov/geo/ (accessed on 3 March 2021))
database is a free public database of microarrays. It is used for gene expression datasets and
platform records. Four datasets with accession number GSE29044, GSE42568, GSE89116,
and GSE109169 were retrieved from the GEO database (https://www.ncbi.nlm.nih.gov/
geo/ (accessed on 3 March 2021)) and analyzed using R packages. DEGs between the
cancer and normal samples were identified by applying statistical parameters. The DEGs
with FC ≥ 1.5 for up regulated and FC ≤ −1.5 for down regulated and adjust p < 0.05 were
considered as the cut-off criteria.

2.2. Construction of Protein-Protein Interaction (PPI) Network

The identified DEGs were further used as input in network building. The PPI network
was constructed by using the STRING database. A total of 161 DEGs extracted from all the
four datasets were used to make the PPI network. Further, analysis of the network and
their visualization process was performed by Cytoscape software (version 3.7.1) [17].

2.3. Characterization of Networks Topological Properties

Topological parameter behaviors were explored to determine the structural properties
of complex networks by using the Network Analyser plugin in Cytoscape [18]. The
Topological properties analyzed are explained below:

2.4. Probability of Degree Distribution

The degree distribution of a PPI network is a probability distribution of a node to have
degree k. The ‘k’ represents the number of links of a node that connects with other nodes.
For example, If G = (N, E) describes a graph of a network, where N and E represent the
node and edges of the network respectively. The, the degree distribution probability (P (k))
of a network is measured by the equation [19,20]:

P (k) = nk/N (1)

where, nk = number of nodes having degree k and N = total number of nodes in the network.

2.5. Betweenness Centrality

In a node of a PPI network, Betweenness centrality characterizes the prominence of in-
formation that is flowing through one node to another by following a shortest path [21,22].
The geodesic paths are shown from node i to node j by ’dij (v)’ which passes through
node ’v’ and ’dij’. The Betweenness centrality of a node v can be measured by the
following equation:

CB (v) = ∑I,j,I 6= j 6= k (dij(v)/dij) (2)

2.6. Closeness Centrality

Closeness centrality characterizes how quickly the information is travelling through
the network i.e., from one node of the PPI network to another node [23]. The Closeness
centrality of the node i is described as the reciprocal average length of the geodesic paths
between the node and all other nodes connected to it in the network. Closeness Centrality
is measured by the following equation:

CC (k) =n/(∑_j d_ij) (3)

http://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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where, dij in a PPI network presents length of the geodesic path between nodes i and j. n
presents total number of nodes in the PPI network connected to node i.

2.7. Community Detection: Leading Eigen Vector Approach

To characterize the modular nature, attributes, and organizing principle of the hier-
archical network, the activities of the created network were defined at various levels of
hierarchy [24]. In this work, the Leading Eigen Vector technique (LEV) [25,26] from the
package ‘igraph’ [27] was utilized in R to discover communities. The LEV technique is
the most promising for community discovery since it computes the Eigen value for each
connection, demonstrating the significance of each link rather than nodes. We discovered
modules from the entire network and then sub-modules from the modules at each level of
organisation to retrieve just the theme (Figure S1).

2.8. Genes Tracing across the Networks

Identifying the primary forces that influence the regulation of the PPI network is one
special problem [28]. This was accomplished by gene tracing using the LCV method in
CYTOSCAPE. This gene tracing was done up to the motif level in several modules/sub-
modules derived through clustering. The network’s regulator was identified by tracking
the most significant and influential nodes within the network’s construction.

2.9. Gene Ontology and Pathway Analysis of Key Genes

The DAVID (https://david.ncifcrf.gov/ (accessed on 7 June 2021)) and KEGG databases
were utilized for GO and pathway analysis to explore the function and associated path-
ways of the key genes [29,30]. Gene ontology (GO) analysis annotates genes and gene
products using functions such as molecular function, biological pathways, and cellular
components [31]. KEGG is a collection of genomic and enzymatic techniques, as well as an
online library of biological chemical energy [32]. KEGG is a resource for comprehensive
gene function analysis as well as associated high-level genome functional information.
DAVID can give full biological function annotation information for high-throughput gene
expression [33]. As a result, we used DAVID online tools to perform GO and KEGG path-
way analyses on the key genes at the functional level. A p < 0.05 was considered statistically
significantly different.

2.10. GEPIA Analysis

GEPIA (http://gepia.cancer-pku.cn/detail.php (accessed on 7 June 2021)) is a spe-
cialized web server for the analysis of RNA-seq data of 9736 tumors and 8587 normal
samples from the TCGA (http://portal.gdc.cancer.gov/ (accessed on 7 June 2021)) and the
GTEx (http://gtexportal.org/home/ (accessed on 7 June 2021)) projects [34]. Using the
GEPIA web server, expression level, survival, and expression level at different stages of
key genes was studied. The predictive value of all key genes was assessed throughout the
TCGA dataset using the GEPIA web server’s default parameters. The default values for all
parameters were used, and the cut-off value was set at median = 50 percent. p < 0.05 was
used to indicate a statistically significant difference in the HR.

2.11. bc-GenExMiner Analysis

The Breast Cancer Gene Expression Miner v4.4, (http://bcgenex.ico.unicancer.fr/BC-
GEM/GEM-Accueil.php?js=1 (accessed on 7 June 2021)) a DNA microarray and RNA-seq
database may be used to look at gene expression and predict prognosis. We looked at
the relationship between gene expression of the key genes and clinic pathological param-
eters like age, and specific region of breast cancer patient sample using microarray data.
Furthermore, we conducted a prognostic analysis of the genes as well.

https://david.ncifcrf.gov/
http://gepia.cancer-pku.cn/detail.php
http://portal.gdc.cancer.gov/
http://gtexportal.org/home/
http://bcgenex.ico.unicancer.fr/BC-GEM/GEM-Accueil.php?js=1
http://bcgenex.ico.unicancer.fr/BC-GEM/GEM-Accueil.php?js=1
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2.12. UALCAN Analysis

The online cancer transcriptome database UALCAN (http://ualcan.path.uab.edu/
(accessed on 7 June 2021)) is meant to enable simple access to publicly accessible cancer
transcriptome data (TCGA and MET500 transcriptome sequencing) [35]. UALCAN is a
comprehensive, user-friendly, and interactive web resource for analyzing cancer OMICS
data. UALCAN enables researchers to access Level 3 RNA-seq data from The Cancer
Genome Atlas (TCGA) and perform gene expression and survival analysis on about 20,500
protein-coding genes in 33 different tumor types [35]. It’s written in PERL-CGI and has high-
resolution visuals created using JavaScript and CSS. The Clinical Proteomic Tumor Analysis
Consortium (CPTAC) Confirmatory/Discovery dataset is now available in UALCAN for
protein expression analysis. The level of expression of key genes in normal breast tissue
and primary invasive breast cancer was compared using this database.

2.13. OncoLnc Analysis
2.13.1. Survival Analysis

An overall survival analysis for patients with breast cancer was performed using the
OncoLnc program (www.oncolnc.org (accessed on 7 June 2021)). OncoLnc is an interac-
tive online application that allows users to explore the survival data of 8647 individuals
from 21 cancer studies in The Cancer Genome Atlas (TCGA), as well as TCGA’s mRNA
and miRNA RNA-Seq expression data. The software allows you to create Kaplan-Meier
graphs that are stratified by gene expression levels. In survival analysis, log-rank p-values
were collected. High and low groups were defined as the 80th (upper) and 20th (lower)
percentiles, respectively. On 10 November 2021, the survival rate curves were produced
using OncoLnc (http://www.OncoLnc.org/ (accessed on 7 June 2021)) [36]. The upper and
lower quartiles were used to divide the high and low expression groups.

2.13.2. Cell Lines, Culture and Validation of Key Regulatory Genes by qRT-PCR

The in-vitro validation of the key regulatory genes was done by using human breast
cancer cell lines namely MCF-7 and MDA-MB-231. Cells were procured from National Cen-
ter for Cell Science (NCCS), Pune, India. Cells were grown and maintained in DMEM media
supplemented with 10% FBS and 1% penicillin/streptomycin salt solution at 37 ◦C in a hu-
midified 5% CO2 incubator. RNA was extracted from 70 to 75% confluent cells using a Trizol
reagent (Ambion, Carlsbad, CA, USA). RNA was quantified using nanodrop, and 1000 ng
of RNA was reverse transcribed into cDNA using Verso cDNA Synthesis Kit (Thermo
Fisher Scientific, Waltham, MA, USA). qRT-PCR was conducted using SYBR™ Green Mas-
ter Mix (Thermo Fisher Scientific, USA) and The Applied Biosystems® QuantStudio™ 6
Flex Real-Time PCR System to determine the expression profile of nine key regulatory
genes obtained through bioinformatics analysis. 18s was used as an endogenous control
to normalize the target genes. Thereafter, relative fold change in expression level was
calculated for all the nine key regulatory genes. Primer list of respective genes is presented
in Table S1.

3. Results
3.1. Characteristics of Datasets Used to Extract Common DEGs

Four datasets having accession number GSE29044, GSE42568, GSE89116, and GSE109169
were obtained from freely accessible NCBI-GEO database. Detailed information of the
datasets is presented in Table 1. GSE29044 dataset was based on the GPL570 platform
containing 6 samples of early tumour patients and 5 samples of early normal aged between
20–35 years old and 25 samples of late tumour and 7 samples of late normal whose age was
greater than 55 years old. GSE89116 dataset was based on the GPL6947 platform containing
11 samples of early tumour patients (max. age 38 years) and 4 samples of early normal
(max. age 35 years) and 13 samples of late tumour (max. age 80 years) and 5 samples of
late normal (max. age 80 years). GSE109169 dataset was based on the GPL570 platform
containing 5 samples of early tumour patients and 5 samples of early normal aged less

http://ualcan.path.uab.edu/
www.oncolnc.org
http://www.OncoLnc.org/
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than 40 years and 20 samples of late tumour and 20 samples of late normal aged more than
40 years. GSE42568 dataset was based on the GPL570 platform containing 104 tumour
samples of patients aged between 31 to 89 years old at the time of diagnosis and 17 normal
samples with no defined age.

Table 1. Detailed information of datasets used to extract differentially expressed genes.

Datasets Total
Samples

Normal
(No. of Samples

and Age)

Disease
(No. of Samples

and Age)

Up
Regulated

Down
Regulated Country Platform Author

GSE29044 43
5

(Age
20–35 years)

7
(Age >

55 years)

6
(Age

20–35 years)

25
(Age >

55 years)
490 716 Saudi

Arabia GPL570 Colak D

GSE89116 33
4

(Age upto
35 years)

5
(Age upto
80 years)

11
(Age upto
38 years)

13
(Age upto
80 years)

186 542 India GPL6947 Malvia S

GSE109169 50
5

(Age upto
40 years)

20
(Age >

40 years)

5
(Age upto
40 years)

20
(Age >

40 years)
219 358 Taiwan GPL570 Chang JW

GSE42568 121 17
(Age not mentioned)

104
(Age 31–89 years) 896 1202 Ireland GPL570 Clarke C

The microarray expression profiles are widely utilized to study the gene expression
on a genome-wide scale. There are few algorithms available that are used to correct the
batch effects before analysing the microarray data. We employed the Empirical Bayes
method built-in function in LIMMA, in combination with the fit2 function. Effective in-
silico methods are required for the integration of Meta-analyses-based microarray data.
These in silico methods are used to merge efficiently various microarray datasets without
considering the impact of demographics, experimental designs, and specimen sources [19].

3.2. Identification of Common DEGs

Only those DEGs that surpassed the cut-off criteria of FC ≥ 1.5 for up re-gulated
genes and FC ≤ −1.5 for down regulated genes and adjust p < 0.05 in all the four data
series were considered as the significant DEGs Figure 1. Total 161 common DEGs were
extracted from all the four datasets by Venn diagram Figure 1e,f. Among these 161 common
DEGs, 44 genes were up regulated and 117 genes were down regulated. List of all the
common DEGs is presented in Table 2. Volcano plot represented DEGs in breast cancer
tissues and non-tumor samples in datasets. (a) GSE29044 (b) GSE42568 (c) GSE89116 (d)
GSE109169 (e) Venn diagram represented the down regulated overlapping DEGs among
GSE29044, GSE42568, GSE89116, and GSE109169 datasets. (f) Venn diagram represented the
up-regulated overlapping DEGs among GSE29044, GSE42568, GSE89116, and GSE109169
datasets.
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Table 2. All common differentially expressed genes (DEGs).

IGF1, LIFR, SFRP1, TSHZ2, SPTBN1, TMEM47, MME, NTRK2, PLAGL1, DMD, MAMDC2, LPL,
HLF, PROS1, FABP4, ABCA9, ADAMTS5, RBMS3, APOLD1, SPRY2, ANGPTL1, EBF1, ITM2A,

MEOX2, CAV1, TGFBR3, OGN, ANKRD29, CRYAB, CLIP4, CD36, EDNRB, CAV2, FAM13A, SYNM,
ADH1B, FHL1, CDO1, TFPI, GPAM, CHRDL1, ABCA8, LYVE1, CACHD1, ITIH5, PLSCR4, SORBS1,

LARP6, RUNX1T1, GPC3, PCDH18, AKAP12, PDK4, ACACB, ECM2, SPRY1, PAMR1, CXCL12,
ADIPOQ, EMCN, FGF2, ATP1A2, ADH1C, PCOLCE2, ABCA6, SIK2, PCDH9, TMEM100,

ARHGAP20, CHL1, MAOA, MTURN, LEP, SLIT3, IGSF10, GSTM5, VIT, RBP7, GPD1, CIDEC,
MYZAP, RSPO3, FAXDC2, CFD, FBLN5, LDB2, GNG11, TEK, RBP4, FAM107A, ENPP2, PLIN1,

CPED1, TIMP4, GSN, LMOD1, ALDH1A1, LAMA2, GPX3, AOC3, MT1M, JAM2, FXYD1, PPARG,
APOD, DPT, G0S2, SH3BGRL2, VGLL3, DLC1, PCK1, C7, PDGFD, ANK2, GHR, TMTC1, CCDC3,
PRC1, RRM2, TPX2, CDKN3, DTL, KIF4A, FAM83D, UBE2T, NUF2, MMP11, COL10A1, CCNB1,

CDK1, DEPDC1, AURKA, CENPF, KIF23, KIF11, ANLN, FN1, EZH2, TRIP13, PBK, DLGAP5,
UHRF1, TK1, CCNB2, MELK, CENPU, ATAD2, HMMR, ECT2, NUSAP1, ASPM, FANCI, SQLE,

TOP2A, KIF20A, RACGAP1, GJB2, TLCD1, COL11A1, LRRC15, CKS2

3.3. Protein-Protein Interaction (PPI) Network of DEGs

The PPI network was constructed by using the String online database and was im-
ported into Cytoscape v. 3.80, which supports the visualization of bipartite graph of
gene-gene linking/interaction/regulation, reflecting gene-disease associations. This also
provides gene-centric views of the network data [20]. The Probe Ids of common DEGs were
mapped to their corresponding gene symbols to create the native network Figure 2. The PPI
network showed 449 nodes and 18214 edges. The network was characterized by several
properties such as average number of neighbours was found 80.811, network diameter was
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7, characteristics path length was 2.228, clustering coefficient was 0.662, network density
was 0.180, network heterogeneity was 0.783, network centralization was 0.375, connected
component was 1 and analysis time of 0.484 s.
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3.4. Community Detection by Leading Eigen Vector Method

To characterise the modular nature, attributes, and organising principle of the hier-
archical network, the activities of the created network were defined at various levels of
hierarchy. For this, Leading Eigen Vector (LEV) method from the package ‘igraph’ was
utilised in R to discover communities. The LEV technique is the most promising for com-
munity discovery since it computes the Eigen value for each connection, demonstrating
the significance of each link rather than nodes. We discovered modules from the entire
network and then sub-modules from the modules at each level of organisation to retrieve
just theme (Figure 3).
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The modules from the native network along with sub-modules from modules at each
level of organization were identified until only motifs remained i.e., unbreakable part of
the network.

3.5. Identification of Key Regulators and Properties of Breast Cancer Network

In the constructed PPI Network, we found two communities that were further broken
down into sub-community and sub-sub-communities up to seventh level. The analysis
of modular structure along its arrangement was carried out by the Newman and Girvan
standard community finding techniques [37]. These techniques were employed at different
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organizational levels (Figure 3). We found that our PPI network is organized hierarchically
through seven different levels.

The leading hubs (nodes) are considered as essential regulators based on changes in
the activities of proteins/genes along with their regulating mechanisms. However, all the
leading hubs cannot be considered as key regulators for the progression of disease. Only
those that regulate the network from top to bottom (where the PPI network cannot be
further divided into sub-community and form motif) are considered as important leading
hubs. These leading hubs are termed as Key Regulators (KRs). Because these KRs are deeply
rooted reaching to motif level (fundamental regulating unit) through different community
or sub-community levels of the organization in the PPI network. KRs act as the backbone
for network’s stability and capacitate it to tackle any unacceptable changes. Topological
properties of any PPI network assist to gain deep insight of a network, its behaviour,
somehow function, characteristics, and how and what the network is [38]. Therefore, we
described some topological properties namely Betweenness Centrality, Degree Centrality,
and Closeness Centrality of our network at almost the last level from the parent network
(Figure S2). Betweenness Centrality is a way of detecting the amount of influence a node
has over the flow of information in a graph. It is often used to find nodes that serve as a
bridge from one part of a graph to another. The measure of Degree Centrality presents
popular nodes within a graph. It measures the number of incoming or outgoing (or
both) relationships from a node, depending on the orientation of a relationship projection.
Closeness centrality detects nodes that can spread information very efficiently through a
graph. The closeness centrality of a node measures its average farness (inverse distance)
to all other nodes. Nodes with a high closeness score have the shortest distances to all
other nodes [21]. The gene tracing was done up to the motif level in several modules/sub
modules derived through clustering. The network’s regulator was identified by tracking
the most significant and influential nodes within the network’s construction. Finally, we
have found nine key regulators namely PCOLCE2, LAMA2, TMTC1, ADAMTS5, TIMP4,
RSPO3, COL11A1, MMP11, and COL10A1.

3.6. Gene Ontology and KEGG Pathway Analysis of Key DEGs

All the DEGs were uploaded to the DAVID database (https://david.ncifcrf.gov/ (ac-
cessed on 7 June 2021)) for GO analysis. Results showed that the nine key genes were
involved in several GO biological processes namely extracellular structure organization,
external encapsulating structure organization, extracellular matrix organization, extracellu-
lar matrix disassembly, cellular component disassembly, collagen fibril organization, and
supramolecular fibre organization (Table S2). Results showed GO Cellular Components
associated with key genes include endoplasmic reticulum lumen, intracellular organelle
lumen, collagen-containing extracellular matrix, basement membrane, and Golgi lumen
(Table S3). GO Molecular Function analysis showed the key genes were associated with
the molecular functions namely metalloendopeptidase activity, metallopeptidase activity,
metalloendopeptidase inhibitor activity, and endopeptidase activity (Table S4). Results
showed that the key genes were enriched in protein digestion and absorption and viral
myocarditis according to the KEGG pathway analysis (Table S5).

3.7. Gene Expression Profiling of Key DEGs

GEPIA (Gene Expression Profiling Interactive Analysis) is a web-based tool for analyz-
ing gene expression data. GEPIA was chosen to analyse hub genes, their overall expression
level comparison to normal tissues and stage wise expression pattern of breast cancer
scenario. The box plot (Figure 4) of all nine hub genes demonstrates that the genes were
abnormally expressed in breast cancer as compared to normal breast tissue. The genes
namely COL11A1, MMP11 and COL10A1 were found up regulated and PCOLCE2, LAMA2,
TMTC1, ADAMTS5, TIMP4 and RSPO3 were found down regulated in breast cancer. The
details LogFC, p-value, and Adj. p. Value of all the nine key genes is presented in Table 3.

https://david.ncifcrf.gov/


Biomedicines 2023, 11, 1271 11 of 19

Biomedicines 2023, 11, x FOR PEER REVIEW 11 of 20 
 

3.7. Gene Expression Profiling of Key DEGs 
GEPIA (Gene Expression Profiling Interactive Analysis) is a web-based tool for 

analyzing gene expression data. GEPIA was chosen to analyse hub genes, their overall 
expression level comparison to normal tissues and stage wise expression pattern of breast 
cancer scenario. The box plot (Figure 4) of all nine hub genes demonstrates that the genes 
were abnormally expressed in breast cancer as compared to normal breast tissue. The 
genes namely COL11A1, MMP11 and COL10A1 were found up regulated and PCOLCE2, 
LAMA2, TMTC1, ADAMTS5, TIMP4 and RSPO3 were found down regulated in breast 
cancer. The details LogFC, p-value, and Adj. p. Value of all the nine key genes is 
presented in Table 3. 

The expression-stage plot analysis (violin plots) revealed that three genes namely 
LAMA2, TMTC1 and TIMP4 among these nine genes were found significantly associated 
(p < 0.05) with different stages of breast cancer (Figure 5). 

Table 3. List of key up- and down-regulated genes with LogFC, p-value, and Adj. p. Value. 

Genes LogFC p Value Adj. p Value 
PCOLCE2 −4.45 2.44 × 10−11 1.67 × 10−7 
LAMA2 −1.89 3.21 × 10−4 1.26 × 10−2 
TMTC1 −2.49 2.97 × 10−3 4.98 × 10−2 

ADAMTS5 −2.31 1.80 × 10−4 9.13 × 10−3 
TIMP4 −2.54 1.40 × 10−4 7.60 × 10−3 
RSPO3 −2.58 5.07 × 10−5 4.03 × 10−3 

COL11A1 5.29 9.91 × 10−14 3.60 × 10−12 
MMP11 4.62 4.13 × 10−6 8.01 × 10−4 

COL10A1 3.49 6.29 × 10−13 2.01 × 10−11 

 
Figure 4. Comparisons of the expression of the nine genes between breast cancer and normal breast 
tissues in TCGA and GTEx based on GEPIA. The Y axis represents the log2 (TPM + 1) for gene Figure 4. Comparisons of the expression of the nine genes between breast cancer and normal
breast tissues in TCGA and GTEx based on GEPIA. The Y axis represents the log2 (TPM + 1) for
gene expression. The Gray bar indicates the normal tissues, and the red bar shows the breast
cancer tissues. These figures were derived from GEPIA. TPM: transcripts per kilobase million. The
box plots (a–i) of all nine hub genes demonstrate that the genes were abnormally expressed in
breast cancer as compared to normal breast tissue. (a) ADAMTS5—down-regulated, (b) COL11A1—
up-regulated, (c) PCOLCE2—down-regulated, (d) RSPO3—down-reguloated, (e) LAMA2—down-
regulated, (f) MMP11—up-regulated, (g) COL10A1—up-regulated, (h) TIMP4—down-regulated, and
(i) TMTC1—down-regulated. * p < 0.05.

Table 3. List of key up- and down-regulated genes with LogFC, p-value, and Adj. p. Value.

Genes LogFC p Value Adj. p Value

PCOLCE2 −4.45 2.44 × 10−11 1.67 × 10−7

LAMA2 −1.89 3.21 × 10−4 1.26 × 10−2

TMTC1 −2.49 2.97 × 10−3 4.98 × 10−2

ADAMTS5 −2.31 1.80 × 10−4 9.13 × 10−3

TIMP4 −2.54 1.40 × 10−4 7.60 × 10−3

RSPO3 −2.58 5.07 × 10−5 4.03 × 10−3

COL11A1 5.29 9.91 × 10−14 3.60 × 10−12

MMP11 4.62 4.13 × 10−6 8.01 × 10−4

COL10A1 3.49 6.29 × 10−13 2.01 × 10−11

The expression-stage plot analysis (violin plots) revealed that three genes namely
LAMA2, TMTC1 and TIMP4 among these nine genes were found significantly associated
(p < 0.05) with different stages of breast cancer (Figure 5).
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Figure 5. The expression-stage plot of three genes associated with breast cancer. The plots were
achieved by the GEPIA web server. The expression-stage plot analysis (violin plots a–c) revealed
that three genes namely (a) LAMA2, (b) TMTC1, and (c) TIMP4 among these nine genes were found
significantly associated (p < 0.05) with different stages of breast cancer.

3.8. Expression Level of Genes among Groups of Patients with Respect to Age Factor

We have used bc-GenExMiner web dependent tool to compare expression level of
genes among groups of patients with respect to age factor. We found that the genes namely
LAMA2, TMTC1, and TIMP4 were significantly expressed among different age groups of
patients, i.e., lower 21 age to higher 97 age groups as indicated by the violin plots (Figure 6).
Moreover, we further deeply investigated the role of LAMA2, TMTC1 and TIMP4 genes in
breast cancer prognosis. We found that LAMA2 and TIMP4 were significantly associated
and TMTC1 gene was less correlated with breast cancer occurrence (Figure 7).

1 

 

 

Figure 6. Violin plot showing gene expression among groups of patients categorized according to
age (a–c). We found that the genes namely (a) LAMA2, (b) TMTC1, and (c) TIMP4 were significantly
expressed among different age groups of patients, i.e., lower 21 age to higher 97 age groups as
indicated by the violin plots.

3.9. Pan-Cancer View of LAMA2, TIMP4, and TMTC1 Expression Level Using
UALCAN Analysis

UALCAN is a comprehensive, user-friendly, and interactive web resource for analyz-
ing cancer OMICS data. UALCAN enables researchers to access Level 3 RNA-seq data from
The Cancer Genome Atlas (TCGA) and perform gene expression and survival analysis
on about 20,500 protein-coding genes in 33 different tumor types [8]. Expression levels of
LAMA2, TIMP4, and TMTC1 across TCGA tumours are shown in (Figure 8). We found that
the expression level of LAMA2, TIMP4, and TMTC1 was higher in all TCGA tumours.
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3.10. Effect of Expression Levels of LAMA2, TIMP4, and TMTC1 on the Survival of Breast Cancer
Patient Oncolnc Analysis

OncoLnc was used to analyse the effect of expression levels of LAMA2, TIMP4, and
TMTC1 on the survival of breast cancer patients. Results are presented in the (Figure 9).
Results showed that all the three genes were significantly (p < 0.05) associated with
poor survival.
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Figure 9. Analysis of the prognostic value of three differentially expressed genes in breast cancer
patients using The Cancer Genome Atlas data. All the three genes (a) LAMA2, (b) TIMP4, and
(c) TMTC1were found significantly (p < 0.05) associated with poor survival.

3.11. Expression of Key DEGs in Human Breast Cancer Cell Lines Using qRT-PCR

The qRT-PCR analysis showed similar type of expression profiles of key regulatory
genes as revealed by the bioinformatics analysis except the two genes namely ADAMTS5
and RSPO3. Results are presented as (Figure 10a–g). The genes namely COL11A1, MMP11
and COL10A1 (Figure 10a–c) were found up-regulated and PCOLCE2, LAMA2, TMTC1,
and TIMP4 (Figure 10d–g) were found down-regulated in breast cancer cell lines also. We
could not determine the expression of two genes namely ADAMTS5 and RSPO3.
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4. Discussion

Breast cancer associated higher mortality rate reflect the need of identification and
discovering new biomarkers, therapeutic molecules, and molecular therapeutic targets
which will pave for the development of early diagnosis and effective treatment. Identifi-
cation of imperative gene targets associated with the cancer phenotypes is essential for
the development of successful therapy. Currently, at larger scale in-silico techniques are
implemented to discover the key regulatory genes. Analysis of gene expression profiles
from different databases provides a plinth to quantify and differentiate the gene expres-
sion level between normal and tumor samples. Hence, the main aim of this proposed
investigation was in-silico identification and in-vitro validation of key regulatory genes
associated with breast cancer phenotypes. We conducted an integrative bioinformatics
analysis by comparing the normal and breast cancer samples from four transcriptomic
datasets. Initially, 161 common differentially expressed genes were extracted from all the
four datasets. Among these differentially expressed genes, 44 genes were up-regulated,
and 117 genes were found down-regulated. Then we constructed the PPI network, which
showed 449 nodes and 18214 edges. To characterize the modular nature, attributes, and
organizing principle of the hierarchical network, the activities of the created network were
defined at various levels of hierarchy. The modules from the native network along with
sub-modules from modules at each level of organization were identified until only mo-
tifs remained i.e., unbreakable part of the network. We found that our PPI network is
organized hierarchically through seven different levels. We traced these modules to find
out the leading hubs or key regulators. Only those that regulate the network from top
to bottom (where the PPI network cannot be further divided into sub-community and
form motif) are considered as important leading hubs or key regulators. We identified
nine key regulators namely PCOLCE2 (Procollagen C-Endopeptidase Enhancer 2), LAMA2
(Laminin Subunit Alpha 2), TMTC1 (transmembrane O-mannosyltransferase targeting
cadherins 1), ADAMTS5 (ADAM Metallopeptidase with Thrombospondin Type 1 Motif 5),
TIMP4 (TIMP-Metallopeptidase Inhibitor 4), RSPO3 (R-Spondin 3), COL11A1 (Collagen
Type XI Alpha 1 Chain), MMP11 (matrix metalloproteinase-11), and COL10A1 (Collagen
Type X Alpha 1 Chain). These nine genes were termed as network’s key regulators or
organizers, as reflected by the PPI network analysis. Among these key genes COL11A1,
MMP11 and COL10A1 were highly expressed and PCOLCE2, LAMA2, TMTC1, ADAMTS5,
TIMP4, and RSPO3 were having lower expression levels in breast cancer samples. Similar
expression profile of seven among nine genes (except ADAMTS5 and RSPO3) was validated
in MCF-7 and MDA-MB-231 human breast cancer cell lines. These validation observations
reflect that these key genes may pave the way for effective therapeutics of breast cancer.
COL11A1 has been reported markedly associated with head and neck, oral cavity/pharynx,
breast, oesophagus, lung, colon, stomach, ovary, and pancreas cancers [39,40]. It has been
found well correlated with adverse clinical outcomes in breast cancer [41], recurrence in
glioblastoma and ovarian cancer [42,43], and poor survival of kidney and ovarian cancer
patients [37,44]. Distinct roles of MMP11 in cancer development, progression and ther-
apeutics have been reported (reviewed in [45]). MMP11 has been suggested as a novel
target antigen for cancer immunotherapy [46]. High MMP11 expression has been found
associated with poor survival of breast cancer patients [47]. Reports highlight that the
expression of COL10A1 is markedly increased in colon, esophagus, and breast cancer and
contributes to cell proliferation, migration, invasion and tumor vasculature [48–50]. Previ-
ous studies suggest that expression pattern of COL10A1 might act as a potential diagnostic
predictor for early breast cancer [51]. PCOLCE2 has been implicated in the colorectal
cancer [5] and gastric cancer [52], however, the expression pattern of PCOLCE2 is poorly
understood. Decreased expression of LAMA2 has been reported in various cancers [53].
LAMA2 has also been found well correlated with tumor sites and to predict poor survival
in pancreatic cancer [54]. TMTC1 has been also found associated with gastric cancer and
has been suggested to act as serve as predictive biomarker for gastric cancer treatment [55].
It is well documented that ADAMTS5 shows tumor type specific functions. ADAMTS5 has
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been reported to act as a tumor suppressor gene in breast cancer [56] and hepatocellular
carcinoma [57]. TIMP4 has been found associated with breast cancer to modulate the ER-α
Signalling in MCF7 Breast Cancer Cells [58]. RSPO3 has been implicated in ovarian cancer
and has been suggested as candidate marker to predict ovarian cancer aggressiveness [59].

Next, we mapped all these key genes to GO analysis. We found that these key reg-
ulators were involved in several GO biological processes namely extracellular structure
organization, external encapsulating structure organization, extracellular matrix organi-
zation, extracellular matrix disassembly, cellular component disassembly, collagen fibril
organization, and supramolecular fibre organization. GO Cellular Components associ-
ated with key genes include endoplasmic reticulum lumen, intracellular organelle lumen,
collagen-containing extracellular matrix, basement membrane, and Golgi lumen. GO Molec-
ular Function analysis showed the key genes were associated with the molecular functions
namely metalloendopeptidase activity, metallopeptidase activity, metalloendopeptidase
inhibitor activity, and endopeptidase activity. These key regulators were enriched in protein
digestion and absorption and viral myocarditis according to the KEGG pathway analy-
sis. All these findings reflect that these key genes are associated with crucial biological
functioning and hence can be implicated for the therapeutics of cancer. Further, we found
that the genes namely LAMA2, TMTC1, and TIMP4 were significantly expressed among
different age groups of patients. LAMA2 and TIMP4 were found significantly associated
and TMTC1 gene was found less correlated with breast cancer occurrence. We found that
the expression level of LAMA2, TIMP4, and TMTC1 was higher in all TCGA tumours and
significantly associated with poor survival.

While bioinformatics-based transcript profiling is a powerful tool for characterizing
the molecular features of breast cancer subtypes, there are limitations associated to this ap-
proach. Bioinformatics-based gene expression profiling may reveal distinct gene expression
patterns that are associated with different subtypes of breast cancer such as in hormone
receptor-positive breast cancer, HER2-positive breast cancer, and Triple-negative breast
cancer. Generally, in hormone receptor-positive breast cancer, there is overexpression of
estrogen receptor (ER) and/or progesterone receptor (PR) genes, increased expression of
genes involved in cell proliferation and cell cycle regulation, such as Ki-67 and Cyclin D1,
high expression of genes involved in estrogen signaling, such as GATA3 and FOXA1, and
Low expression of genes involved in immune response and inflammation, such as TNF
and IL6. In HER2-positive breast cancer, there is overexpression of the HER2 gene and
other genes in the HER2 signaling pathway, increased expression of genes involved in cell
proliferation and survival, such as MYC and BCL2, high expression of genes involved in
DNA repair and genomic stability, such as BRCA1 and BRCA2, and low expression of genes
involved in immune response and inflammation, such as TNF and IL6. In triple-negative
breast cancer, there is low expression of hormone receptors (ER and PR) and HER2 gene,
increased expression of genes involved in cell cycle regulation, such as Cyclin B1 and
CDC20, high expression of genes involved in DNA damage repair, such as RAD51 and
BRCA1, and high expression of genes involved in immune response and inflammation,
such as IFNγ and TNFα. It’s important to note that these transcript profile characteristics in
bioinformatics-based gene expression profiling may not be absolute and can vary among
individual tumors within a given subtype. In addition, bioinformatics analysis based
identified genes could be also general prognostic markers for other types of tumors, but
not specific to breast tumors only. Nonetheless, the bioinformatics bases gene expression
profiling has helped to identify potential therapeutic targets and develop personalized
treatment strategies for many diseases.

5. Conclusions

In conclusion, our study identified nine key regulators, of which COL11A1, MMP11
and COL10A1 were up regulated and PCOLCE2, LAMA2, TMTC1, ADAMTS5, TIMP4 and
RSPO3 were down regulated in breast cancer samples as compared to control samples.
Expression level of LAMA2, TIMP4, and TMTC1 was higher in all different stages of TCGA
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breast cancer samples and significantly expressed among different age groups of patients
(younger to older age group). LAMA2 and TIMP4 were significantly associated and TMTC1
gene was less correlated with breast cancer occurrence. Survival analysis of the genes
showed significant association of LAMA2, TIMP4, and TMTC1 were significantly associated
with poor survival.
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