4 research outputs found

    Valuing Health Gain from Composite Response Endpoints for Multisystem Diseases

    Get PDF
    Objectives: This study aimed to demonstrate how to estimate the value of health gain after patients with a multisystem disease achieve a condition-specific composite response endpoint. Methods: Data from patients treated in routine practice with an exemplar multisystem disease (systemic lupus erythematosus) were extracted from a national register (British Isles Lupus Assessment Group Biologics Register). Two bespoke composite response endpoints (Major Clinical Response and Improvement) were developed in advance of this study. Difference-in-differences regression compared health utility values (3-level version of EQ-5D; UK tariff) over 6 months for responders and nonresponders. Bootstrapped regression estimated the incremental quality-adjusted life-years (QALYs), probability of QALY gain after achieving the response criteria, and population monetary benefit of response. Results: Within the sample (n = 171), 18.2% achieved Major Clinical Response and 49.1% achieved Improvement at 6 months. Incremental health utility values were 0.0923 for Major Clinical Response and 0.0454 for Improvement. Expected incremental QALY gain at 6 months was 0.020 for Major Clinical Response and 0.012 for Improvement. Probability of QALY gain after achieving the response criteria was 77.6% for Major Clinical Response and 72.7% for Improvement. Population monetary benefit of response was £1 106 458 for Major Clinical Response and £649 134 for Improvement. Conclusions: Bespoke composite response endpoints are becoming more common to measure treatment response for multisystem diseases in trials and observational studies. Health technology assessment agencies face a growing challenge to establish whether these endpoints correspond with improved health gain. Health utility values can generate this evidence to enhance the usefulness of composite response endpoints for health technology assessment, decision making, and economic evaluation

    Safety, tolerability, and efficacy of pirfenidone in patients with rheumatoid arthritis-associated interstitial lung disease: a randomised, double-blind, placebo-controlled, phase 2 study

    No full text
    Background: Interstitial lung disease is a known complication of rheumatoid arthritis, with a lifetime risk of developing the disease in any individual of 7·7%. We aimed to assess the safety, tolerability, and efficacy of pirfenidone for the treatment of patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD). Methods: TRAIL1 was a randomised, double-blind, placebo-controlled, phase 2 trial done in 34 academic centres specialising in interstitial lung disease in four countries (the UK, the USA, Australia, and Canada). Adults aged 18–85 years were eligible for inclusion if they met the 2010 American College of Rheumatology and European Alliance of Associations for Rheumatology criteria for rheumatoid arthritis and had interstitial lung disease on a high-resolution CT scan imaging and, when available, lung biopsy. Exclusion criteria include smoking, clinical history of other known causes of interstitial lung disease, and coexistant clinically significant COPD or asthma. Patients were randomly assigned (1:1) to receive 2403 mg oral pirfenidone (pirfenidone group) or placebo (placebo group) daily. The primary endpoint was the incidence of the composite endpoint of a decline from baseline in percent predicted forced vital capacity (FVC%) of 10% or more or death during the 52-week treatment period assessed in the intention-to-treat population. Key secondary endpoints included change in absolute and FVC% over 52 weeks, the proportion of patients with a decline in FVC% of 10% or more, and the frequency of progression as defined by Outcome Measures in Rheumatoid Arthritis Clinical Trials (OMERACT) in the intention-to-treat population. This study is registered with ClinicalTrials.gov, NCT02808871. Findings: From May 15, 2017, to March 31, 2020, 231 patients were assessed for inclusion, of whom 123 patients were randomly assigned (63 [51%] to the pirfenidone group and 60 [49%] to the placebo group). The trial was stopped early (March 31, 2020) due to slow recruitment and the COVID-19 pandemic. The difference in the proportion of patients who met the composite primary endpoint (decline in FVC% from baseline of 10% or more or death) between the two groups was not significant (seven [11%] of 63 patients in the pirfenidone group vs nine [15%] of 60 patients in the placebo group; OR 0·67 [95% CI 0·22 to 2·03]; p=0·48). Compared with the placebo group, patients in the pirfenidone group had a slower rate of decline in lung function, measured by estimated annual change in absolute FVC (–66 vs –146; p=0·0082) and FVC% (–1·02 vs –3·21; p=0·0028). The groups were similar with regards to the decline in FVC% by 10% or more (five [8%] participants in the pirfenidone group vs seven [12%] in the placebo group; OR 0·52 [95% CI 0·14–1·90]; p=0·32) and the frequency of progression as defined by OMERACT (16 [25%] in the pirfenidone group vs 19 [32%] in the placebo group; OR 0·68 [0·30–1·54]; p=0·35). There was no significant difference in the rate of treatment-emergent serious adverse events between the two groups, and there were no treatment-related deaths. Interpretation: Due to early termination of the study and underpowering, the results should be interpreted with caution. Despite not meeting the composite primary endpoint, pirfenidone slowed the rate of decline of FVC over time in patients with RA-ILD. Safety in patients with RA-ILD was similar to that seen in other pirfenidone trials. Funding: Genentech
    corecore