2,589 research outputs found
Widespread Receptivity to Neuropeptide PDF throughout the Neuronal Circadian Clock Network of Drosophila Revealed by Real-Time Cyclic AMP Imaging
SummaryThe neuropeptide PDF is released by sixteen clock neurons in Drosophila and helps maintain circadian activity rhythms by coordinating a network of ∼150 neuronal clocks. Whether PDF acts directly on elements of this neural network remains unknown. We address this question by adapting Epac1-camps, a genetically encoded cAMP FRET sensor, for use in the living brain. We find that a subset of the PDF-expressing neurons respond to PDF with long-lasting cAMP increases and confirm that such responses require the PDF receptor. In contrast, an unrelated Drosophila neuropeptide, DH31, stimulates large cAMP increases in all PDF-expressing clock neurons. Thus, the network of ∼150 clock neurons displays widespread, though not uniform, PDF receptivity. This work introduces a sensitive means of measuring cAMP changes in a living brain with subcellular resolution. Specifically, it experimentally confirms the longstanding hypothesis that PDF is a direct modulator of most neurons in the Drosophila clock network
Magnetic switching in granular FePt layers promoted by near-field laser enhancement
Light-matter interaction at the nanoscale in magnetic materials is a topic of
intense research in view of potential applications in next-generation
high-density magnetic recording. Laser-assisted switching provides a pathway
for overcoming the material constraints of high-anisotropy and high-packing
density media, though much about the dynamics of the switching process remains
unexplored. We use ultrafast small-angle x-ray scattering at an x-ray
free-electron laser to probe the magnetic switching dynamics of FePt
nanoparticles embedded in a carbon matrix following excitation by an optical
femtosecond laser pulse. We observe that the combination of laser excitation
and applied static magnetic field, one order of magnitude smaller than the
coercive field, can overcome the magnetic anisotropy barrier between "up" and
"down" magnetization, enabling magnetization switching. This magnetic switching
is found to be inhomogeneous throughout the material, with some individual FePt
nanoparticles neither switching nor demagnetizing. The origin of this behavior
is identified as the near-field modification of the incident laser radiation
around FePt nanoparticles. The fraction of not-switching nanoparticles is
influenced by the heat flow between FePt and a heat-sink layer
Observation of Coherently Coupled Cation Spin Dynamics in an Insulating Ferrimagnetic Oxide
Many technologically useful magnetic oxides are ferrimagnetic insulators,
which consist of chemically distinct cations. Here, we examine the spin
dynamics of different magnetic cations in ferrimagnetic NiZnAl-ferrite
(NiZnAlFeO) under continuous microwave
excitation. Specifically, we employ time-resolved x-ray ferromagnetic resonance
to separately probe Fe and Ni cations on different sublattice
sites. Our results show that the precessing cation moments retain a rigid,
collinear configuration to within 2. Moreover, the effective
spin relaxation is identical to within 10% for all magnetic cations in the
ferrite. We thus validate the oft-assumed ``ferromagnetic-like'' dynamics in
resonantly driven ferrimagnetic oxides, where the magnetic moments from
different cations precess as a coherent, collective magnetization
Simvastatin decreases the level of heparin-binding protein in patients with acute lung injury
Background: Heparin-binding protein is released by neutrophils during inflammation and disrupts the integrity of the alveolar and capillary endothelial barrier implicated in the development of acute lung injury and systemic organ failure. We sought to investigate whether oral administration of simvastatin to patients with acute lung injury reduces plasma heparin-binding protein levels and improves intensive care unit outcome. Methods: Blood samples were collected from patients with acute lung injury with 48 h of onset of acute lung injury (day 0), day 3, and day 7. Patients were given placebo or 80 mg simvastatin for up to 14 days. Plasma heparin-binding protein levels from patients with acute lung injury and healthy volunteers were measured by ELISA. Results: Levels of plasma heparin-binding protein were significantly higher in patients with acute lung injury than healthy volunteers on day 0 (p = 0.011). Simvastatin 80 mg administered enterally for 14 days reduced plasma level of heparin-binding protein in patients. Reduced heparin-binding protein was associated with improved intensive care unit survival. Conclusions: A reduction in heparin-binding protein with simvastatin is a potential mechanism by which the statin may modify outcome from acute lung injury
Deceleration and trapping of heavy diatomic molecules using a ring-decelerator
We present an analysis of the deceleration and trapping of heavy diatomic
molecules in low-field seeking states by a moving electric potential. This
moving potential is created by a 'ring-decelerator', which consists of a series
of ring-shaped electrodes to which oscillating high voltages are applied.
Particle trajectory simulations have been used to analyze the deceleration and
trapping efficiency for a group of molecules that is of special interest for
precision measurements of fundamental discrete symmetries. For the typical case
of the SrF molecule in the (N,M) = (2, 0) state, the ring-decelerator is shown
to outperform traditional and alternate-gradient Stark decelerators by at least
an order of magnitude. If further cooled by a stage of laser cooling, the
decelerated molecules allow for a sensitivity gain in a parity violation
measurement, compared to a cryogenic molecular beam experiment, of almost two
orders of magnitude
Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group.
Cancer immunotherapy has transformed the treatment of cancer. However, increasing use of immune-based therapies, including the widely used class of agents known as immune checkpoint inhibitors, has exposed a discrete group of immune-related adverse events (irAEs). Many of these are driven by the same immunologic mechanisms responsible for the drugs\u27 therapeutic effects, namely blockade of inhibitory mechanisms that suppress the immune system and protect body tissues from an unconstrained acute or chronic immune response. Skin, gut, endocrine, lung and musculoskeletal irAEs are relatively common, whereas cardiovascular, hematologic, renal, neurologic and ophthalmologic irAEs occur much less frequently. The majority of irAEs are mild to moderate in severity; however, serious and occasionally life-threatening irAEs are reported in the literature, and treatment-related deaths occur in up to 2% of patients, varying by ICI. Immunotherapy-related irAEs typically have a delayed onset and prolonged duration compared to adverse events from chemotherapy, and effective management depends on early recognition and prompt intervention with immune suppression and/or immunomodulatory strategies. There is an urgent need for multidisciplinary guidance reflecting broad-based perspectives on how to recognize, report and manage organ-specific toxicities until evidence-based data are available to inform clinical decision-making. The Society for Immunotherapy of Cancer (SITC) established a multidisciplinary Toxicity Management Working Group, which met for a full-day workshop to develop recommendations to standardize management of irAEs. Here we present their consensus recommendations on managing toxicities associated with immune checkpoint inhibitor therapy
Measurement of the Proton and Deuteron Spin Structure Function g_1 in the Resonance Region
We have measured the proton and deuteron spin structure functions g_1^p and
g_1^d in the region of the nucleon resonances for W^2 < 5 GeV^2 and and GeV^2 by inelastically scattering 9.7 GeV polarized
electrons off polarized and targets. We observe
significant structure in g_1^p in the resonance region. We have used the
present results, together with the deep-inelastic data at higher W^2, to
extract . This is the first
information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn
limit at Q^2 = 0.Comment: 7 pages, 2 figure
The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules
Beams of atoms and molecules are stalwart tools for spectroscopy and studies
of collisional processes. The supersonic expansion technique can create cold
beams of many species of atoms and molecules. However, the resulting beam is
typically moving at a speed of 300-600 m/s in the lab frame, and for a large
class of species has insufficient flux (i.e. brightness) for important
applications. In contrast, buffer gas beams can be a superior method in many
cases, producing cold and relatively slow molecules in the lab frame with high
brightness and great versatility. There are basic differences between
supersonic and buffer gas cooled beams regarding particular technological
advantages and constraints. At present, it is clear that not all of the
possible variations on the buffer gas method have been studied. In this review,
we will present a survey of the current state of the art in buffer gas beams,
and explore some of the possible future directions that these new methods might
take
- …