21 research outputs found

    High-entropy alloys as high-temperature thermoelectric materials

    Get PDF
    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials

    Alloy design for intrinsically ductile refractory high-entropy alloys

    Get PDF
    Refractory high-entropy alloys (RHEAs), comprising group IV (Ti, Zr, Hf), V (V, Nb, Ta), and VI (Cr, Mo, W) refractory elements, can be potentially new generation high-temperature materials. However, most existing RHEAs lack room-temperature ductility, similar to conventional refractory metals and alloys. Here, we propose an alloy design strategy to intrinsically ductilize RHEAs based on the electron theory and more specifically to decrease the number of valence electrons through controlled alloying. A new ductile RHEA, Hf0.5 Nb 0.5 Ta 0.5Ti1.5Zr, was developed as a proof of concept, with a fracture stress of close to 1 GPa and an elongation of near 20%. The findings here will shed light on the development of ductile RHEAs for ultrahigh-temperature applications in aerospace and power-generation industries

    Struktur och Egenskapsundersökningar av La2Co1+z(Ti1-xMgx)1-zO6 Perovskit Systemet

    No full text
    Perovskite based materials have great potentials for various energy applications and the search for new materials for uses in SOFCs has largely been concentrated to this class of compounds. In this search, we have studied perovskite phases in the system La2Co1+z(Ti1-xMgx)1-zO6, with 0  x 0.9 and z = 0.0, 0.2, 0.4, 0.6. Crystal structures were characterized by XRD and, for selected compositions, also by NPD and SAED. They exhibit with increasing x, as well as increasing z, a progressive increase in symmetry from monoclinic to orthorhombic to rhombohedral. The main focus in this work has been on the investigation of structure-property relations for compositions with 0.0 x 0.5 and z = 0. The nominal oxidation state of Co increases for these with increasing x, from Co2+ for x = 0 to Co3+ for x = 0.5. Magnetic measurements and XANES studies showed that the average spin state of Co changes linearly with increasing x, up to x = 0.5, in accordance with varying proportions of Co with two fixed oxidation states, i.e. Co2+ and Co3+. The data suggests that the Co3+ ions have an IS spin state or a mixture of LS and HS spin states for all compositions with nominally only Co2+ and Co3+ ions, possibly with the exception of the composition with x = 0.1, 0.2 and z = 0, for which the data indicate that the spin state might be HS. The XANES data indicate furthermore that for the perovskite phases with z = 0 and x > 0.5, which in the absence of O atom vacancies contain formally Co4+, the highest oxidation state of Co is Co3+, implying that the substitution of Ti4+ by Mg2+ for x ³ 0.5 effects an oxidation of O2- ions rather than an oxidation of Co3+ ions. The thermal expansion was found to increase nearly linearly with increasing oxidation state of Co. This agrees well with findings in previous studies and is attributable to an increase in the ionic radius of Co3+ ions with increasing temperature, due to a thermal excitation from a LS to IS or LS/HS spin states. High temperature electronic conductivity measurements indicate that the electronic conductivity increases with an increase of both relative and absolute amount of Co3+. The latter can be attributed to an increase in the number of Co-O-Co connections. Additional high temperature magnetic measurements for selected samples, whose susceptibilities did not follow a Curie law behaviour up to room temperature, showed effective magnetic moments that did approach plateaus even at high temperatures (900 K). Interpretations of these data are, however, hindered by the samples losing oxygen during the applied heating-cooling cycle. The present study has shown that the investigated system is suitable for further studies, of more fundamental character, which could provide further insight of the structure-property relationships that depend on the oxidation state of Co.Studies of cobalt based perovskites for cathode materials in solid oxide fuel cells

    Egenskaper hos nya komplexa perovskitrelaterade material, en fråga om sammansättning och struktur

    No full text
    This PhD thesis presents investigations of perovskite-related compounds in systems of interest for applications in components in solid oxide fuel cells. The compound compositions derive from substitutions in the parent compounds LaCoO3, LaCrO3 and SrFeO3. Novel phases La2Co1+z(MgxTi1-x)1-zO6 were synthesized and investigated with regard to structure, thermal expansion, electronic and magnetic properties. The study focused on the composition lines La2Co(MgxTi1-x)O6 (z=0), where the oxidation state of Co nominally changes from +2 (x=0.0) to +3 (x=0.5), and La2Co1+z(Mg0.5Ti0.5)1-zO6, with a varying fraction of Co3+ ions. XANES data show that the Co ions in the system have discrete oxidation states of +2 and +3. The TEC increases with increasing x due to an increasing contribution from spin state transitions of the Co3+ ions. Novel compounds La2Cr(M2/3Nb1/3)O6 with M=Mg, Ni, Cu were synthesized and characterized with respect to structure and magnetic properties. XRPD and NPD data indicate Pbnm symmetry; however, SAED patterns and HREM images indicate a P21/n symmetry for M=Mg, and Cu. The magnetic measurements results were rationalized using the Goodenough-Kanamori rules. Oxygen-deficient phases with x≥0.63 in SrxY1-xFeO3-δ and Sr0.75Y0.25Fe1-yMyO3-δ (M=Cr, Mn, Ni and y=0.2, 0.33, 0.5), were synthesized and characterized with respect to structure, oxygen content, thermogravimetry, TEC, conductivity and magnetic properties. Powder patterns of phases agree with cubic  perovskite structures. NPD data for x=0.75 reveal anisotropic displacement for the O atom, related to local effects from Fe3+/Fe4+ ions. SAED patterns for x=0.75 reveal the presence of an incommensurate modulation. The compounds start to lose oxygen in air at ~ 400°C. The TEC up to ~400°C for x=0.75 is ~10.5 ppm/K and increase to ~17.5 ppm/K at higher temperatures. The conductivity for x=0.91 is 164 S/cm at 400°C. Partial substitution of Fe by Cr, Mn or Ni does not increase the conductivity or decrease TEC

    Balancing Scattering Channels: A Panoscopic Approach toward Zero Temperature Coefficient of Resistance Using High-Entropy Alloys

    No full text
    Designing alloys with an accurate temperature-independent electrical response over a wide temperature range, specifically a low temperature coefficient of resistance (TCR), remains a big challenge from a material design point of view. More than a century after their discovery, Constantan (Cu–Ni) and Manganin (Cu–Mn–Ni) alloys remain the top choice for strain gauge applications and high-quality resistors up to 473–573 K. Here, an average TCR is demonstrated that is up to ≈800 times smaller in the temperature range 5–300 K and >800 times smaller than for any of these standard materials over a wide temperature range (5 K < T < 1200 K). This is achieved for selected compositions of AlxCoCrFeNi high-entropy alloys (HEAs), for which a strong correlation of the ultralow TCR is established with the underlying microstructure and its local composition. The exceptionally low electron–phonon coupling expected in these HEAs is crucial for developing novel devices, e.g., hot-electron detectors, high-Q resonant antennas, and materials in gravitational wave detectors

    Aluminizing for enhanced oxidation resistance of ductile refractory high-entropy alloys

    No full text
    Refractory high-entropy alloys (RHEAs) emerge as promising candidate materials for ultrahigh-temperature applications. One critical issue to solve for RHEAs is their balanced oxidation resistance and mechanical properties, mainly room-temperature ductility for the latter. Recently, it was found that existing ductile RHEAs are subject to catastrophic accelerated oxidation, also known as pesting. In this work, both alloying and surface coating, are applied to enhance the oxidation resistance of ductile RHEAs, with the focus on surface coating using the pack cementation method and more specifically, aluminizing. The oxidation resistance of two RHEAs, Hf0.5Nb0.5Ta0.5Ti1.5Zr, one recently identified ductile RHEA which pests in the temperature range of 600–1000 \ub0C, and Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, the newly designed ductile RHEA which does not pest but embrittles after oxidation, are studied after aluminizing at 900 \ub0C using three different pack components. Aluminizing, if using the appropriate pack cementation parameters, can avoid pesting in Hf0.5Nb0.5Ta0.5Ti1.5Zr and alleviate the oxidation induced embrittlement in Al0.5Cr0.25Nb0.5Ta0.5Ti1.5, and holds the promise for further improving the RHEAs as potential ultrahigh-temperature materials

    Hydrogenous Zintl Phase Ba3Si4HxBa_{3}Si_{4}H_{x} (x = 1 - 2): Transforming Si4Si_{4} "Butterfly" Anions into Tetrahedral Moieties

    No full text
    The hydride Ba3Si4Hx (x = 1–2) was prepared by sintering the Zintl phase Ba3Si4, which contains Si46– butterfly-shaped polyanions, in a hydrogen atmosphere at pressures of 10–20 bar and temperatures of around 300 °C. Initial structural analysis using powder neutron and X-ray diffraction data suggested that Ba3Si4Hx adopts the Ba3Ge4C2 type [space group I4/mcm (No. 140), a ≈ 8.44 Å, c ≈ 11.95 Å, Z = 8] where Ba atoms form a three-dimensional array of corner-condensed octahedra, which are centered by H atoms. Tetrahedron-shaped Si4 polyanions complete a perovskite-like arrangement. Thus, hydride formation is accompanied by oxidation of the butterfly polyanion, but the model with the composition Ba3Si4H is not charge-balanced. First-principles computations revealed an alternative structural scenario for Ba3Si4Hx, which is based on filling pyramidal Ba5 interstices in Ba3Si4. The limiting composition is x = 2 [space group P42/mmm (No. 136), a ≈ 8.4066 Å, c ≈ 12.9186 Å, Z = 8], and for x > 1, Si atoms also adopt tetrahedron-shaped polyanions. Transmission electron microscopy investigations showed that Ba3Si4Hx is heavily disordered in the c direction. Most plausible is to assume that Ba3Si4Hx has a variable H content (x = 1–2) and corresponds to a random intergrowth of P- and I-type structure blocks. In either form, Ba3Si4Hx is classified as an interstitial hydride. Polyanionic hydrides in which H is covalently attached to Si remain elusive

    Crystal structure, thermal expansion and high-temperature electrical conductivity of A-site deficient La2-zCo1+y(MgxNb1-x)1-yO6 double perovskites

    No full text
    New La-deficient double perovskites with P21/n symmetry, La∼1.90(Co2+1-xMg2+x)(Co3+1/3Nb5+2/3)O6 with x=0, 0.13 and 0.33, and La2(Co2+1/2Mg2+1/2) (Co3+1/2Nb5+1/2)O6 were prepared by solid state reaction at 1450 \ub0C. Their crystal structures were refined using time-of-flight neutron powder diffraction data. Our results show that certain cations such as Nb5+, with very strong B-O bonds in the perovskite structure, can induce A-site vacancies in double perovskites. Upon heating in N2 gas atmosphere at 1200 \ub0C ∼1% O atom vacancies are formed together with a partial reduction of the Co3+ content. The average thermal expansion coefficient between 25 and 900 \ub0C of La1.90(Co2+2/3Mg2+1/3)(Co3+1/3Nb5+2/3)O6 was determined to be 17.4 ppm K-1. Four-point electronic conductivity measurements showed that the compounds are semiconductors, with conductivities varying between 3.7\ub710-2 and 7.7\ub710-2 S cm-1 at 600 \ub0C and activation energies between 0.77 and 0.81 eV. Partial replacement of La3+ with Sr2+ does not lead to any increase of conductivity, while replacement of Mg2+ with Cu2+ in La1.9CoCu1/3Nb2/3O6 and La1.8CoCu1/2Nb1/2O6 leads to ∼100 times larger conductivities at 600 \ub0C, 0.35 and 1.0 S cm-1, respectively, and lower activation energies, 0.57 and 0.73 eV, respectively

    Tracking of high-temperature thermal expansion and transport properties vs. oxidation state of cobalt between +2 and +3 in the La2Co1+z(Ti1-xMgx)(1-z)O-6-system

    No full text
    The high-temperature thermal expansion and electronic transport properties of the B-site substituted LaCoO3 with both variable oxidation state of cobalt between +2 and +3 (La2Co(Ti1-xMgx)O-6, 0 &lt;= x &lt;= 0.5) and variable Co3+-content relative to the other B-cations (La2Co1+z(Ti0.5Mg0.5)(1-z)O-6, 0.2 &lt;= z &lt;= 0.6) have been investigated. Based on the temperature dependence of the thermal expansion, electronic transport properties and Seebeck coefficient, three different groups of compositions according to their symmetries can be allocated. It was found that the thermal expansion coefficients (TECs) of the studied compounds are mainly dependent on the proportion of Co2+/Co3+. For La2Co(Ti1-xMgx)O-6, the TEC increases from similar to 9 (x = 0) to similar to 19 ppm K-1 (x = 0.5) with an increase of the oxidation state of cobalt from +2 to +3, respectively. The TECs of La2Co1+z(Ti0.5Mg0.5)(1-z)O-6, z = 0.2-0.6 with Co3+-only, remain constant at similar to 21 ppm K-1 independent of the cobalt content. Thermoelectric measurements of the system indicate that all samples in the system, except La2Co1.6(Ti0.5Mg0.5)(0.4)O-6, are p-type conductors over the whole temperature range, 300 &lt; T &lt; 1175 K. The conductivities were found to increase with an increase of both Co3+ and total cobalt content and are described with a small polaron hopping model. Due to an insignificant number of oxygen vacancies of La2Co1+z(Ti1-xMgx)(1-z)O-6 samples prepared in air at elevated temperatures, the investigated system is proposed as an excellent model system for the investigation of the influence of the Co oxidation state and stoichiometry on different properties in perovskite cobalt oxides.AuthorCount:9;</p
    corecore