4 research outputs found

    Hepatic lipoprotein export and remission of human type 2 diabetes after weight loss

    Get PDF
    The role of hepatic lipoprotein metabolism in diet-induced remission of type 2 diabetes is currently unclear. Here, we determined the contributions of hepatic VLDL1-triglyceride production rate and VLDL1-palmitic acid content to changes in intra-pancreatic fat and return of first phase insulin response in a subgroup of the Diabetes Remission Clinical Trial. Liver fat, VLDL1-triglyceride production, and intra-pancreatic fat decreased after weight loss and remained normalized after 24 months of remission. First-phase insulin response remained increased only in those maintaining diabetes remission. Compared with those in remission at 24 months, individuals who relapsed after initial remission had a greater rise in the content of VLDL1-triglyceride and VLDL1-palmitic acid, re-accumulated intra-pancreatic fat, and lost first-phase response by 24 months. Thus, we observed temporal relationships between VLDL1-triglyceride production, hepatic palmitic acid flux, intra-pancreatic fat, and β-cell function. Weight-related disordered fat metabolism appears to drive development and reversal of type 2 diabetes

    Thiosulfate sulfurtransferase deficiency promotes oxidative distress and aberrant NRF2 function in the brain

    No full text
    CERVOXYInternational audienceThiosulfate sulfurtransferase (TST, EC 2.8.1.1) was discovered as an enzyme that detoxifies cyanide by conversion to thiocyanate (rhodanide) using thiosulfate as substrate; this rhodanese activity was subsequently identified to be almost exclusively located in mitochondria. More recently, the emphasis regarding its function has shifted to hydrogen sulfide metabolism, antioxidant defense, and mitochondrial function in the context of protective biological processes against oxidative distress. While TST has been described to play an important role in liver and colon, its function in the brain remains obscure. In the present study, we therefore sought to address its potential involvement in maintaining cerebral redox balance in a murine model of global TST deficiency (Tst−/− mice), primarily focusing on characterizing the biochemical phenotype of TST loss in relation to neuronal activity and sensitivity to oxidative stress under basal conditions. Here, we show that TST deficiency is associated with a perturbation of the reactive species interactome in the brain cortex secondary to altered ROS and RSS (specifically, polysulfide) generation as well as mitochondrial OXPHOS remodeling. These changes were accompanied by aberrant Nrf2-Keap1 expression and thiol-dependent antioxidant function. Upon challenging mice with the redox-active herbicide paraquat (25 mg/kg i.p. for 24 h), Tst−/− mice displayed a lower antioxidant capacity compared to wildtype controls (C57BL/6J mice). These results provide a first glimpse into the molecular and metabolic changes of TST deficiency in the brain and suggest that pathophysiological conditions associated with aberrant TST expression and/or activity renders neurons more susceptible to oxidative stress-related malfunction

    Thiosulfate sulfurtransferase deficiency promotes oxidative distress and aberrant NRF2 function in the brain

    Get PDF
    Thiosulfate sulfurtransferase (TST, EC 2.8.1.1) was discovered as an enzyme that detoxifies cyanide by conversion to thiocyanate (rhodanide) using thiosulfate as substrate; this rhodanese activity was subsequently identified to be almost exclusively located in mitochondria. More recently, the emphasis regarding its function has shifted to hydrogen sulfide metabolism, antioxidant defense, and mitochondrial function in the context of protective biological processes against oxidative distress. While TST has been described to play an important role in liver and colon, its function in the brain remains obscure. In the present study, we therefore sought to address its potential involvement in maintaining cerebral redox balance in a murine model of global TST deficiency (Tst−/− mice), primarily focusing on characterizing the biochemical phenotype of TST loss in relation to neuronal activity and sensitivity to oxidative stress under basal conditions. Here, we show that TST deficiency is associated with a perturbation of the reactive species interactome in the brain cortex secondary to altered ROS and RSS (specifically, polysulfide) generation as well as mitochondrial OXPHOS remodeling. These changes were accompanied by aberrant Nrf2-Keap1 expression and thiol-dependent antioxidant function. Upon challenging mice with the redox-active herbicide paraquat (25 mg/kg i.p. for 24 h), Tst−/− mice displayed a lower antioxidant capacity compared to wildtype controls (C57BL/6J mice). These results provide a first glimpse into the molecular and metabolic changes of TST deficiency in the brain and suggest that pathophysiological conditions associated with aberrant TST expression and/or activity renders neurons more susceptible to oxidative stress-related malfunction
    corecore