67 research outputs found

    Compromising the 20S Proteasome Activates a Quality Control Pathway to Mitigate Proteotoxic Stress

    Get PDF
    The regulation of the ubiquitin-proteasome system (UPS) has been the subject of a vast body of work because of its implication in normal development and a wide range of diseases. The UPS controls the degradation of a large number of cellular proteins and thereby regulates essential cellular processes critical for cellular adaptation and more. Amongst the main processes are removal of mis-folded and potentially toxic proteins, cell’s loss of protein quality control is often associated with muscle atrophy and neurodegenerative diseases. The proteasome is subject to tight regulation, as many different proteins govern its transcription, assembly, stability and activity. Consequently, its regulation is extremely complex and even further complicated by the fact that all the above events are responsive to changing cellular environment and different pathophysiological conditions. Although the proteasome has been studied extensively, much still remains unknown, especially missing is a detailed mechanism as to how its complexed and multi-phased assembly adapts to proteotoxic stress. In this thesis I used a proteasome impaired genetic background to screen for suppressors of proteotoxic stress which modify proteasomes adaptive tress response. To my surprise I identified a core 20S subunit of the proteasome, α1 subunit. This finding uncovered its functional interaction with a yet uncharacterized regulator of proteasome stability in Drosophila, Ecm29 (CG8858). Whereas much is known of proteasome stress response at the level of its expression, very little is known of adaptive responses through alternative assembly. The results of this thesis suggest a new mechanism for proteasome stress adaption through modified assembly. To date most studies of proteasome regulation focused on the regulatory particle as master regulator and overlooked participation of the proteasome core particle in regulatory function. This thesis exemplifies the significance of the core particle, specifically its α ring, as an integral entity in the regulation of protein degradation by the proteasome. The overall findings demonstrate vitality of the proteasomes as active players in the response to proteotoxic stress. Furthermore, they define regulation of proteasome assembly as a mechanism to control suitable protein turnover and healthy cellular function

    Unique Cost Dynamics Elucidate the Role of Frameshifting Errors in Promoting Translational Robustness

    Get PDF
    There is now considerable evidence supporting the view that codon usage is frequently under selection for translational accuracy. There are, however, multiple forms of inaccuracy (missense, premature termination, and frameshifting errors) and pinpointing a particular error process behind apparently adaptive mRNA anatomy is rarely straightforward. Understanding differences in the fitness costs associated with different types of translational error can help us devise critical tests that can implicate one error process to the exclusion of others. To this end, we present a model that captures distinct features of frameshifting cost and apply this to 641 prokaryotic genomes. We demonstrate that, although it is commonly assumed that the ribosome encounters an off-frame stop codon soon after the frameshift and costs of mis-elongation are therefore limited, genomes with high GC content typically incur much larger per-error costs. We go on to derive the prediction, unique to frameshifting errors, that differences in translational robustness between the 5′ and 3′ ends of genes should be less pronounced in genomes with higher GC content. This prediction we show to be correct. Surprisingly, this does not mean that GC-rich organisms necessarily carry a greater fitness burden as a consequence of accidental frameshifting. Indeed, increased per-error costs are often more than counterbalanced by lower predicted error rates owing to more diverse anticodon repertoires in GC-rich genomes. We therefore propose that selection on tRNA repertoires may operate to reduce frameshifting errors

    Burden-driven feedback control of gene expression

    Get PDF
    Cells use feedback regulation to ensure robust growth despite fluctuating demands for resources and differing environmental conditions. However, the expression of foreign proteins from engineered constructs is an unnatural burden that cells are not adapted for. Here we combined RNA-seq with an in vivo assay to identify the major transcriptional changes that occur in Escherichia coli when inducible synthetic constructs are expressed. We observed that native promoters related to the heat-shock response activated expression rapidly in response to synthetic expression, regardless of the construct. Using these promoters, we built a dCas9-based feedback-regulation system that automatically adjusts the expression of a synthetic construct in response to burden. Cells equipped with this general-use controller maintained their capacity for native gene expression to ensure robust growth and thus outperformed unregulated cells in terms of protein yield in batch production. This engineered feedback is to our knowledge the first example of a universal, burden-based biomolecular control system and is modular, tunable and portable

    PrfA regulation offsets the cost of Listeria virulence outside the host.

    Get PDF
    Virulence traits are essential for pathogen fitness, but whether they affect microbial performance in the environment, where they are not needed, remains experimentally unconfirmed. We investigated this question with the facultative pathogen L isteria monocytogenes and its PrfA virulence regulon. PrfA‐regulated genes are activated intracellularly (PrfA ‘ON’) but shut down outside the host (PrfA ‘OFF’). Using a mutant PrfA regulator locked ON (PrfA*) and thus causing PrfA‐controlled genes to be constitutively activated, we show that virulence gene expression significantly impairs the listerial growth rate (μ) and maximum growth (A) in rich medium. Deletion analysis of the PrfA regulon and complementation of a L. monocytogenes mutant lacking all PrfA‐regulated genes with PrfA* indicated that the growth reduction was specifically due to the unneeded virulence determinants and not to pleiotropic regulatory effects of PrfA ON. No PrfA*‐associated fitness disadvantage was observed in infected eukaryotic cells, where PrfA‐regulated virulence gene expression is critical for survival. Microcosm experiments demonstrated that the constitutively virulent state strongly impaired L . monocytogenes performance in soil, the natural habitat of these bacteria. Our findings provide empirical proof that virulence carries a significant cost to the pathogen. They also experimentally substantiate the assumed, although not proven, key role of virulence gene regulation systems in suppressing the cost of bacterial virulence outside the host

    Cost of Unneeded Proteins in E. coli Is Reduced after Several Generations in Exponential Growth

    No full text
    When E. coli cells express unneeded protein, they grow more slowly. Such penalty to fitness associated with making proteins is called protein cost. Protein cost is an important component in the cost-benefit tradeoffs that underlie the evolution of protein circuits, but its origins are still poorly understood. Here, we ask how the protein cost varies during the exponential growth phase of E. coli. We find that cells growing exponentially following an upshift from overnight culture show a large cost when producing unneeded proteins. However, after several generations, while still in exponential growth, the cells enter a phase where cost is much reduced despite vigorous unneeded protein production. We find that this reduced-cost phase depends on the ppGpp system, which adjusts the amount of ribosomes in the cell and does not occur after a downshift from rich to poor medium. These findings suggest that protein cost is a transient phenomenon that happens upon an upshift in conditions and that cost is reduced when ribosomes and other cellular systems have increased to their appropriate steady-state level in the new condition

    Empirical model and in vivo characterization of the bacterial response to synthetic gene expression show that ribosome allocation limits growth rate

    No full text
    Synthetic biology uses modeling to facilitate the design of new genetic constructions. In particular, it is of utmost importance to model the reaction of the cellular chassis when expressing heterologous systems. We constructed a mathematical model for the response of a bacterial cell chassis under heterologous expression. For this, we relied on previous characterization of the growth-rate dependence on cellular resource availability (in this case, DNA and RNA polymerases and ribosomes). Accordingly, we estimated the maximum capacities of the cell for heterologous expression to be 46% of the total RNA and the 33% of the total protein. To experimentally validate our model, we engineered two genetic constructions that involved the constitutive expression of a fluorescent reporter in a vector with a tunable origin of replication. We performed fluorescent measurements using population and single-cell fluorescent measurements. Our model predicted cell growth for several heterologous constructions under five different culture conditions and various plasmid copy numbers with significant accuracy, and confirmed that ribosomes act as the limiting resource. Our study also confirmed that the bacterial response to synthetic gene expression could be understood in terms of the requirement for cellular resources and could be predicted from relevant cellular parameters
    corecore