36 research outputs found

    Electropolymerized Coatings of Poly (o-anisidine) and Poly (o-anisidine)-TiO2 Nanocompsite on Aluminum Alloy 3004 by using the Galvanostatic Method and Their Corrosion Protection Performance

    Get PDF
    Poly (o-anisidine) (POA) and also poly (o-anisidine)-TiO2 (POA-TiO2) nanocomposite coatings on aluminum alloy 3004 (AA3004) have been investigated by using the galvanostatic method. The electrosynthesized coatings were characterized by FT-IR, SEM- EDX, SEM and AFM. The corrosion protection performances of POA and also POA-TiO2 nanocomposite coatings were investigated in 3.5% NaCl solution by using the potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). The corrosion rate of nanocomposite coatings was found ∼900 times lower than bare AA3004. The results of this study clearly ascertain that the POA-TiO2 nanocomposite has outstanding potential to protect the AA3004 against corrosion. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3481

    Electropolymerized Coatings of Poly (o-anisidine) and Poly (o-anisidine)-TiO2 Nanocompsite on Aluminum Alloy 3004 by using the Galvanostatic Method and Their Corrosion Protection Performance

    Get PDF
    Poly (o-anisidine) (POA) and also poly (o-anisidine)-TiO2 (POA-TiO2) nanocomposite coatings on aluminum alloy 3004 (AA3004) have been investigated by using the galvanostatic method. The electrosynthesized coatings were characterized by FT-IR, SEM- EDX, SEM and AFM. The corrosion protection performances of POA and also POA-TiO2 nanocomposite coatings were investigated in 3.5% NaCl solution by using the potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). The corrosion rate of nanocomposite coatings was found ∼900 times lower than bare AA3004. The results of this study clearly ascertain that the POA-TiO2 nanocomposite has outstanding potential to protect the AA3004 against corrosion. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3481

    Control of cellular adhesiveness in hyaluronic acid-based hydrogel through varying degrees of phenol moiety cross-linking

    No full text
    Current hyaluronic acid-based hydrogels often cause cytotoxicity to encapsulated cells and lack the adhesive property required for effective biomedical and tissue engineering applications. Provision of the cell-adhesive surface is an important requirement to improve its biocompatibility. An aqueous solution of hyaluronic acid possessing phenolic hydroxyl (HA-Ph) moieties is gellable via a horseradish peroxidase (HRP)-catalyzed oxidative cross-linking reaction. This study evaluates the effect of different degrees of cross-linked Ph moieties on cellular adhesiveness and proliferation on the resultant enzymatically cross-linked HA-Ph hydrogels. Mechanical characterization demonstrated that the compression force of engineered hydrogels could be tuned in the range of 0.05�35 N by changing conjugated Ph moieties in the precursor formulation. The water contact angle and water content show hydrophobicity of hydrogels increased with increasing content of cross-linked Ph groups. The seeded mouse embryo fibroblast-like cell line and human cervical cancer cell line, on the HA-Ph hydrogel, proved cell attachment and spreading with a high content of cross-linked Ph groups. The HA-Ph with a higher degree of Ph moieties shows the maximum degree of cell adhesion, spreading, and proliferation which presents this hydrogel as a suitable biomaterial for biomedical and tissue engineering applications. © 2020 Wiley Periodicals LLC
    corecore