137 research outputs found

    Neo-clerodanes from Teucrium divaricatum and their potential antiinflammatory and antimicrobial activities

    Get PDF
    Corresponding author (NCNPR): Fadime AydoÄŸan, [email protected]://egrove.olemiss.edu/pharm_annual_posters_2022/1000/thumbnail.jp

    Potential utility of natural products as regulators of breast cancer-associated aromatase promoters

    Get PDF
    Aromatase, the key enzyme in estrogen biosynthesis, converts androstenedione to estrone and testosterone to estradiol. The enzyme is expressed in various tissues such as ovary, placenta, bone, brain, skin, and adipose tissue. Aromatase enzyme is encoded by a single gene CYP 19A1 and its expression is controlled by tissue-specific promoters. Aromatase mRNA is primarily transcribed from promoter I.4 in normal breast tissue and physiological levels of aromatase are found in breast adipose stromal fibroblasts. Under the conditions of breast cancer, as a result of the activation of a distinct set of aromatase promoters (I.3, II, and I.7) aromatase expression is enhanced leading to local overproduction of estrogen that promotes breast cancer. Aromatase is considered as a potential target for endocrine treatment of breast cancer but due to nonspecific reduction of aromatase activity in other tissues, aromatase inhibitors (AIs) are associated with undesirable side effects such as bone loss, and abnormal lipid metabolism. Inhibition of aromatase expression by inactivating breast tumor-specific aromatase promoters can selectively block estrogen production at the tumor site. Although several synthetic chemical compounds and nuclear receptor ligands are known to inhibit the activity of the tumor-specific aromatase promoters, further development of more specific and efficacious drugs without adverse effects is still warranted. Plants are rich in chemopreventive agents that have a great potential to be used in chemotherapy for hormone dependent breast cancer which could serve as a source for natural AIs. In this brief review, we summarize the studies on phytochemicals such as biochanin A, genistein, quercetin, isoliquiritigenin, resveratrol, and grape seed extracts related to their effect on the activation of breast cancer-associated aromatase promoters and discuss their aromatase inhibitory potential to be used as safer chemotherapeutic agents for specific hormone-dependent breast cancer

    Biological and Phytochemical Studies on Six Astragalus Taxa from Anatolia

    Get PDF
    Corresponding author (NCNPR): Fadime AydoÄŸan, [email protected]://egrove.olemiss.edu/pharm_annual_posters_2022/1001/thumbnail.jp

    Chemical Analysis and Biological Activities of Salvia lavandulifolia Vahl. Essential Oil

    Get PDF
    Genus Salvia is one of important genera belonging to family lamiaceae. Most of reported biological activities of Salvia usually attributed to its volatile oil. The chemical composition of essential oil from Salvia lavandulifolia was analyzed by GC/MS. A total of sixty seven components were identified in the oil of S. lavandulifolia representing 95.78% of the total oil. β-caryophyllene (11.87%), spathulenol (8.13%), neomenthol (7.75%), pulegone (6.97%), hexadecanoic acid (6.85%), germacrene-D (5.70%), bicyclogermacrene (4.53%), caryophyllene oxide (3.97%) and humulene (3.29%) were found to be the major constituents. The oil showed no antimicrobial and antileishmanial activities in a concentration up to 200 and20 µg/mL, respectively. It displayed a weak antimalarial activity (47 % inhibition) against P. flaciparium.The oil exhibited anti-inflammatory activity adopting iNOS inhibition assay with IC50of 30 µg/mL, but there is no cytotoxicity demonstrated by the oil at tested concentration of 100 µg/mL. Keywords: S. lavandulifolia, essential oil, antimalaria, antimicrobial, antiinflammtory, anticancer

    University of Mississippi Botanical Dietary Supplements Research Center

    Get PDF
    Department/Unit poster (NCNPR). Corresponding author: Nirmal Pugh ([email protected])https://egrove.olemiss.edu/pharm_annual_posters_2022/1016/thumbnail.jp

    Synthesis of benzonaphthofuroquinones and benzoylnaphthindolizinediones by reactions of flavonoids with dichlone under basylous, oxygenous and aqueous conditions: Their cytotoxic and apoptotic activities

    Get PDF
    © 2020 The Royal Society of Chemistry. Using flavonoids and dichlone as substrates, benzonaphthofuroquinones (1, 2, 3, 5, 6, novel; 4 new) and benzoylnaphthindolizinediones (7, 8, known; 9, new) were synthesized through common base-catalyzed method and a new method of combining base-catalyzed with O2/H2O exposing. The possible reaction mechanisms may involve the process like isomerization, hydration, oxidation, decomposition and intermolecular condensation. Benzonaphthofuroquinones (2, 3, 4, 5) were found to exhibit potent cytotoxicity against carcinoma cell lines and low toxicity to normal cell lines. The compounds 4 and 5 not only expressed a significant late-stage-apoptosis against human leukemia and melanoma, but also promoted the cleavage of caspase-3 and PARP in human leukemia, which suggested that the late-stage-apoptosis and caspase-3 pathway may be responsible for the cytotoxicities of these benzonaphthofuroquinones. The replacement of the furan ring with pyrrole system in benzoylnaphthindolizinediones (7, 8, 9) resulted in the loss of anticancer activity

    Chemometrics-assisted identification of anti-inflammatory compounds from the green alga klebsormidium flaccidum var. Zivo

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). The green alga Klebsormidium flaccidum var. zivo is a rich source of proteins, polyphenols, and bioactive small-molecule compounds. An approach involving chromatographic fractionation, anti-inflammatory activity testing, ultrahigh performance liquid chromatography-mass spectrometry profiling, chemometric analysis, and subsequent MS-oriented isolation was employed to rapidly identify its small-molecule anti-inflammatory compounds including hydroxylated fatty acids, chlorophyll-derived pheophorbides, carotenoids, and glycoglycerolipids. Pheophorbide a, which decreased intracellular nitric oxide production by inhibiting inducible nitric oxide synthase, was the most potent compound identified with an IC50 value of 0.24 µM in lipopolysaccharides-induced macrophages. It also inhibited nuclear factor kappaB activation with an IC50 value of 32.1 µM in phorbol 12-myristate 13-acetate-induced chondrocytes. Compared to conventional bioassay-guided fractionation, this approach is more efficient for rapid identification of multiple chemical classes of bioactive compounds from a complex natural product mixture

    Evaluation of some biological activities of Abelia triflora R Br (Caprifoliaceae) constituents

    Get PDF
    Purpose: To investigate the antioxidant, anti-inflammatory, antidiabetic,  cardiovascular and cytotoxic activities of the leaf extract and major compounds isolated from Abelia triflora R. Br. (Caprifoliaceae)Methods: The chloroform soluble fraction of A. triflora leaves was subjected to several column chromatographic separations to isolate its constituents.  Anti-inflammatory and antioxidant activities were determined in terms of the ability to inhibit NF-kB, iNOS activity and lipoxygenase enzyme, and to decrease oxidative stress in HepG2 cells. Antidiabetic and cardiovascular activities were determined by screening for peroxisome proliferator-activated receptor alpha (PPARα) and PPARɣ agonistic activities. In vitro cytotoxic activity was determined against a set of four human cancer cell lines (SK-MEL, KB, BT-549, SK-OV-3) and two  non-cancerous kidney cell lines (LLC-PK1 and VERO). Cell viability was measured by neutral red assay.Results: Three triterpene acids were isolated from the chloroform fraction namely; ursolic acid (4), 2, 3-dihydroxy ursolic acid (5) and 2, 3, 21-trihydroxy ursolic acid (6). The results showed that ursolic acid exhibited potent inhibition of lipoxygenase enzyme and iNOS (inducible nitric oxide synthase) activity with IC50 (half-maximal inhibitory concentration) value of 13.0 μg/mL, compared to parthenolide positive standard (IC50, 0.3μg/mL); furthermore, it inhibited NF-kB (nuclear factor-kappa B) with IC50 of 25.0 μg/mL, compared to parthenolide (positive standard, (IC50, 0.5 μg/mL). Also, ursolic acid possessed the highest cytotoxic effect against the three cell lines, SK-MEL (IC50, 14.5 μg/mL), BT-549 (IC50, 16.0 μg/mL) and SK-OV-3 (IC50, 12.5 μg/mL). Only 2,3-dihydroxy ursolic acid activated PPARɣ (1.5-fold at 25 μM), compared to rosiglitazone (positive standard, 3.7 fold at 10 μM)Conclusion: Among the investigated compounds, ursolic acid exhibited the highest anti-inflammatory and cytotoxic activities, while 2,3-dihydroxy ursolic acid demonstrated antidiabetic activity via activation of PPARɣ.Keywords: Abelia triflora, Anti-inflammatory, Antidiabetic, Cardiovascular activity, Antioxidant, Cytotoxi

    Salvia ceratophylla L. from South of Jordan: new insights on chemical composition and biological activities

    Get PDF
    © 2020, The Author(s). In Jordan, Salvia ceratophylla L. is traditionally used in the treatment of cancer, microbial infections, and urinary disorders. This study aimed: (1) to chemically characterize S. ceratophylla essential oil (EO) from South Jordan, by gas chromatography (GC) and gas chromatography-mass spectrometry (GC–MS); and (2) to evaluate in vitro the cytotoxic, anti-inflammatory, and antiprotozoal activities of the EO, it’s predominant components, and the hexane (A), ethyl acetate (B), methanol (C) and crude-methanol extracts (D). The analysis revealed that the EO has 71 compounds, with linalool (54.8%) as main constituent. Only the hexane extract (A) showed some cytotoxic activity against SK-MEL, KB, BT-549, SK-OV-3, LLC-PK1 and VERO cells lines with IC50 between 60 and \u3e 100 µg/mL. The EO inhibited NO production (IC50 90 µg/mL) and NF-κB activity (IC50 38 µg/mL). The extracts A, B, and D inhibited NO production and NF- κB activity with IC50 between 32 and 150 µg/mL. Linalool considerably inhibited NO production (IC50 18 µg/mL). The extracts tested did not exhibit antileishmanial activity. Regarding antitrypanosomal activity, the EO exhibited significant results with IC50 2.65 µg/mL. In conclusion, Jordan S. ceratophylla EO represents a rich source of linalool and bears a promising therapeutic potential for further antitrypanosomal drug development
    • …
    corecore