150 research outputs found

    Phases of a rotating Bose-Einstein condensate with anharmonic confinement

    Full text link
    We examine an effectively repulsive Bose-Einstein condensate of atoms that rotates in a quadratic-plus-quartic potential. With use of a variational method we identify the three possible phases of the system (multiple quantization, single quantization, and a mixed phase) as a function of the rotational frequency of the gas and of the coupling constant. The derived phase diagram is shown to be universal and the continuous transitions to be exact in the limit of weak coupling and small anharmonicity. The variational results are found to be consistent with numerical solutions of the Gross-Pitaevskii equation.Comment: 8 pages, 6 figure

    Bose-Einstein Condensates in Rotating Lattices

    Full text link
    Strongly interacting bosons in 2D in a rotating square lattice are investigated via a modified Bose-Hubbard Hamiltonian. Such a system corresponds to a rotating lattice potential imprinted on a trapped Bose-Einstein condensate. Second-order quantum phase transitions between states of different symmetries are observed at discrete rotation rates. For the square lattice we study, there are four possible ground-state symmetries.Comment: 4 pages, 5 figures, Accepted for publication in PRL v2: Replaced phase winding labels with symmetry eigenstate indices, replaced Gaussian Ansatz with more general treatment and other minor change

    Nonlinear Transport of Bose-Einstein Condensates Through Waveguides with Disorder

    Get PDF
    We study the coherent flow of a guided Bose-Einstein condensate incident over a disordered region of length L. We introduce a model of disordered potential that originates from magnetic fluctuations inherent to microfabricated guides. This model allows for analytical and numerical studies of realistic transport experiments. The repulsive interaction among the condensate atoms in the beam induces different transport regimes. Below some critical interaction (or for sufficiently small L) a stationary flow is observed. In this regime, the transmission decreases exponentially with L. For strong interaction (or large L), the system displays a transition towards a time dependent flow with an algebraic decay of the time averaged transmission.Comment: 15 pages, 9 figure

    Vortex phase diagram in rotating two-component Bose-Einstein condensates

    Full text link
    We investigate the structure of vortex states in rotating two-component Bose-Einstein condensates with equal intracomponent but varying intercomponent coupling constants. A phase diagram in the intercomponent-coupling versus rotation-frequency plane reveals rich equilibrium structures of vortex states. As the ratio of intercomponent to intracomponent couplings increases, the interlocked vortex lattices undergo phase transitions from triangular to square, to double-core lattices, and eventually develop interwoven "serpentine" vortex sheets with each component made up of chains of singly quantized vortices.Comment: 4 pages, 4 figures, revtex

    Formation of Quantum-Degenerate Sodium Molecules

    Full text link
    Ultra-cold sodium molecules were produced from an atomic Bose-Einstein condensate by ramping an applied magnetic field across a Feshbach resonance. More than 10510^5 molecules were generated with a conversion efficiency of ∼\sim4%. Using laser light resonant with an atomic transition, the remaining atoms could be selectively removed, preventing fast collisional relaxation of the molecules. Time-of-flight analysis of the pure molecular sample yielded an instantaneous phase-space density greater than 20.Comment: 5 pages, 4 figures (final published version

    Response of an atomic Bose-Einstein condensate to a rotating elliptical trap

    Full text link
    We investigate numerically the response of an atomic Bose-Einstein condensate to a weakly-elliptical rotating trap over a large range of rotation frequencies. We analyse the quadrupolar shape oscillation excited by rotation, and discriminate between its stable and unstable regimes. In the latter case, where a vortex lattice forms, we compare with experimental observations and find good agreement. By examining the role of thermal atoms in the process, we infer that the process is temperature-independent, and show how terminating the rotation gives control over the number of vortices in the lattice. We also study the case of critical rotation at the trap frequency, and observe large centre-of-mass oscillations of the condensate.Comment: 14 pages, 8 figure

    Solitons in coupled atomic-molecular Bose-Einstein condensates in a trap

    Full text link
    We consider coupled atomic-molecular Bose-Einstein condensate system in a quasi-one-dimensional trap. In the vicinity of a Feshbach resonance the system can reveal soliton-like behavior. We analyze bright soliton solutions for the system in the trap and in the presence of the interactions between particles. We show that with increasing number of particles in the system two bright soliton solutions start resembling dark soliton profiles known in an atomic Bose-Einstein condensate with repulsive interactions between atoms. We analyze also methods for experimental preparation and detection of the soliton states.Comment: 7 pages, 7 figures, published versio

    Coherent Molecular Optics using Sodium Dimers

    Full text link
    Coherent molecular optics is performed using two-photon Bragg scattering. Molecules were produced by sweeping an atomic Bose-Einstein condensate through a Feshbach resonance. The spectral width of the molecular Bragg resonance corresponded to an instantaneous temperature of 20 nK, indicating that atomic coherence was transferred directly to the molecules. An autocorrelating interference technique was used to observe the quadratic spatial dependence of the phase of an expanding molecular cloud. Finally, atoms initially prepared in two momentum states were observed to cross-pair with one another, forming molecules in a third momentum state. This process is analogous to sum-frequency generation in optics

    Sodium Bose-Einstein Condensates in an Optical Lattice

    Full text link
    The phase transition from a superfluid to a Mott insulator has been observed in a 23^{23}Na Bose-Einstein condensate. A dye laser detuned ≈5\approx 5nm red of the Na 323^2S→32 \to 3^2P1/2_{1/2} transition was used to form the three dimensional optical lattice. The heating effects of the small detuning as well as the three-body decay processes constrained the timescale of the experiment. Certain lattice detunings were found to induce a large loss of atoms. These loss features were shown to be due to photoassociation of atoms to vibrational levels in the Na2_2 (1)3Σg+(1) ^3\Sigma_g^+ state.Comment: Figures somewhat compromised due to size reductio

    Spin textures in slowly rotating Bose-Einstein Condensates

    Full text link
    Slowly rotating spin-1 Bose-Einstein condensates are studied through a variational approach based upon lowest Landau level calculus. The author finds that in a gas with ferromagnetic interactions, such as 87^{87}Rb, angular momentum is predominantly carried by clusters of two different types of skyrmion textures in the spin-vector order parameter. Conversely, in a gas with antiferromagnetic interactions, such as 23^{23}Na, angular momentum is carried by π\pi-disclinations in the nematic order parameter which arises from spin fluctuations. For experimentally relevant parameters, the cores of these π\pi-disclinations are ferromagnetic, and can be imaged with polarized light.Comment: 14 pages, 12 low resolution bitmapped figures, RevTeX4. High resolution figures available from author. Suplementary movies available from autho
    • …
    corecore