13 research outputs found

    Burkitt lymphoma classification and MYC-associated non-Burkitt lymphoma investigation based on gene expression

    Get PDF
    Burkitt lymphoma and diffuse large B-cell lymphoma are two closely related types of lymphoma that are managed differently in clinical practice and the accurate diagnosis is a key point in treatment decisions. However based on current criteria combined with morphological, immunophenotypic and genetic characteristics, a significant number of cases exhibit overlapping features where diagnosis and treatment decisions are difficult to make. Especially, the prognosis have been reported significantly unfavourable in a subset of cases that are initially diagnosed as diffuse large B-cell lymphoma but bear MYC gene translocation, which is a defining feature of Burkitt lymphoma however can also be found in other lymphomas. Despite the adverse effect of MYC in aggressive lymphomas other than Burkitt lymphoma, the underlying mechanism and effective treatment is still unclear. Recent technological advances have made it possible to simultaneously investigate an enormous number of bio-molecules, and the scientific fields associated with measuring molecular data in such a high-throughput way are usually called “omics”. For example, genomics assesses thousands of DNA sequences and transcriptomics assays large numbers of transcripts in a single experiment. These techniques together with the rapidly emerging analytical methods in bioinformatics have introduced cancer research into a new era. The growing amount of omics data have significantly influenced the understanding of lymphomas and hold great promise in classifying subtypes, predicting treatment responses that will eventually lead to personalized therapy. Here in this study, we investigate the discrimination of Burkitt lymphoma and diffuse large B-cell lymphoma based on DNA microarray gene expression data, which has contributed most in molecular classification of lymphoma subtypes in the last decade. On the basis of two previous research level gene expression profiling classifiers, we developed a robust classifier that works effectively on different platforms and formalin fixed paraffin-embedded samples commonly used in routine clinic. The validation of the classifier on the samples from clinical patients achieves a high agreement with diagnosis made in a central haematopathology laboratory, and leads to a potential outcome indication in the patients presenting intermediate features. In addition, we explore the role of MYC in the above lymphomas. Our investigation emphasizes the inferior impact of high level MYC mRNA expression on patients’ outcome, and the functional analysis of MYC high expression associated genes show significantly enriched molecular mechanisms of proliferation and metabolic process. Moreover, the gene PRMT5 is found to be highly correlated with MYC expression which opens a possible therapeutic target for the treatment

    BatmanNet: Bi-branch Masked Graph Transformer Autoencoder for Molecular Representation

    Full text link
    Although substantial efforts have been made using graph neural networks (GNNs) for AI-driven drug discovery (AIDD), effective molecular representation learning remains an open challenge, especially in the case of insufficient labeled molecules. Recent studies suggest that big GNN models pre-trained by self-supervised learning on unlabeled datasets enable better transfer performance in downstream molecular property prediction tasks. However, they often require large-scale datasets and considerable computational resources, which is time-consuming, computationally expensive, and environmentally unfriendly. To alleviate these limitations, we propose a novel pre-training model for molecular representation learning, Bi-branch Masked Graph Transformer Autoencoder (BatmanNet). BatmanNet features two tailored and complementary graph autoencoders to reconstruct the missing nodes and edges from a masked molecular graph. To our surprise, BatmanNet discovered that the highly masked proportion (60%) of the atoms and bonds achieved the best performance. We further propose an asymmetric graph-based encoder-decoder architecture for either nodes and edges, where a transformer-based encoder only takes the visible subset of nodes or edges, and a lightweight decoder reconstructs the original molecule from the latent representation and mask tokens. With this simple yet effective asymmetrical design, our BatmanNet can learn efficiently even from a much smaller-scale unlabeled molecular dataset to capture the underlying structural and semantic information, overcoming a major limitation of current deep neural networks for molecular representation learning. For instance, using only 250K unlabelled molecules as pre-training data, our BatmanNet with 2.575M parameters achieves a 0.5% improvement on the average AUC compared with the current state-of-the-art method with 100M parameters pre-trained on 11M molecules.Comment: 11 pages, 3 figure

    Molecular High-Grade B-Cell Lymphoma: Defining a Poor-Risk Group That Requires Different Approaches to Therapy.

    Get PDF
    PURPOSE: Biologic heterogeneity is a feature of diffuse large B-cell lymphoma (DLBCL), and the existence of a subgroup with poor prognosis and phenotypic proximity to Burkitt lymphoma is well known. Conventional cytogenetics identifies some patients with rearrangements of MYC and BCL2 and/or BCL6 (double-hit lymphomas) who are increasingly treated with more intensive chemotherapy, but a more biologically coherent and clinically useful definition of this group is required. PATIENTS AND METHODS: We defined a molecular high-grade (MHG) group by applying a gene expression-based classifier to 928 patients with DLBCL from a clinical trial that investigated the addition of bortezomib to standard rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) therapy. The prognostic significance of MHG was compared with existing biomarkers. We performed targeted sequencing of 70 genes in 400 patients and explored molecular pathology using gene expression signature databases. Findings were validated in an independent data set. RESULTS: The MHG group comprised 83 patients (9%), with 75 in the cell-of-origin germinal center B-cell-like group. MYC rearranged and double-hit groups were strongly over-represented in MHG but comprised only one half of the total. Gene expression analysis revealed a proliferative phenotype with a relationship to centroblasts. Progression-free survival rate at 36 months after R-CHOP in the MHG group was 37% (95% CI, 24% to 55%) compared with 72% (95% CI, 68% to 77%) for others, and an analysis of treatment effects suggested a possible positive effect of bortezomib. Double-hit lymphomas lacking the MHG signature showed no evidence of worse outcome than other germinal center B-cell-like cases. CONCLUSION: MHG defines a biologically coherent high-grade B-cell lymphoma group with distinct molecular features and clinical outcomes that effectively doubles the size of the poor-prognosis, double-hit group. Patients with MHG may benefit from intensified chemotherapy or novel targeted therapies.Supported by Bloodwise grant number 15002: Precision Medicine for Aggressive Lymphoma. The Randomized Evaluation of Molecular-Guided Therapy for DLBCL With Bortezomib (REMoDL-B) trial was endorsed by Cancer Research UK, reference number CRUKE/10/024, and Janssen-Cillag provided funding. A.S. is partly funded by the National Institute for Health Research Oxford Biomedical Research Centre. D.R.W. acknowledges UK Medical Research Council grant MR/L01629X/1 for infrastructure support

    Distinct genetic changes reveal evolutionary history and heterogeneous molecular grade of DLBCL with MYC / BCL2 double-hit

    Get PDF
    Abstract: Using a Burkitt lymphoma-like gene expression signature, we recently defined a high-risk molecular high-grade (MHG) group mainly within germinal centre B-cell like diffuse large B-cell lymphomas (GCB-DLBCL), which was enriched for MYC/BCL2 double-hit (MYC/BCL2-DH). The genetic basis underlying MHG-DLBCL and their aggressive clinical behaviour remain unknown. We investigated 697 cases of DLBCL, particularly those with MYC/BCL2-DH (n = 62) by targeted sequencing and gene expression profiling. We showed that DLBCL with MYC/BCL2-DH, and those with BCL2 translocation, harbour the characteristic mutation signatures that are associated with follicular lymphoma and its high-grade transformation. We identified frequent MYC hotspot mutations that affect the phosphorylation site (T58) and its adjacent amino acids, which are important for MYC protein degradation. These MYC mutations were seen in a subset of cases with MYC translocation, but predominantly in those of MHG. The mutations were more frequent in double-hit lymphomas with IG as the MYC translocation partner, and were associated with higher MYC protein expression and poor patient survival. DLBCL with MYC/BCL2-DH and those with BCL2 translocation alone are most likely derived from follicular lymphoma or its precursor lesion, and acquisition of MYC pathogenic mutations may augment MYC function, resulting in aggressive clinical behaviour

    Longitudinal expression profiling identifies a poor risk subset of patients with ABC-type Diffuse Large B Cell Lymphoma

    Get PDF
    Despite the effectiveness of immuno-chemotherapy, 40\cell lymphoma (DLBCL) experience relapse or refractory disease. Longitudinal studies have previously focused on the mutational landscape of relapse but fell short of providing a consistent relapse-specific genetic signature. In our study, we have focussed attention on the changes in gene expression profile accompanying DLBCL relapse using archival paired diagnostic/relapse specimens from 38 de novo DLBCL patients. Cell of origin remained stable from diagnosis to relapse in 80\ with only a single patient showing COO switching from ABC to GCB. Analysis of the transcriptomic changes that occur following relapse suggest ABC and GCB relapses are mediated via different mechanisms. We developed a 30-gene discriminator for ABC-DLBCLs derived from relapse-associated genes, that defined clinically distinct high and low risk subgroups in ABC-DLBCLs at diagnosis in datasets comprising both population-based and clinical trial cohorts. This signature also identified a population of \lt;60-year-old patients with superior PFS and OS treated with Ibrutinib-R-CHOP as part of the PHOENIX trial. Altogether this new signature adds to the existing toolkit of putative genetic predictors now available in DLBCL that can be readily assessed as part of prospective clinical trials

    Gene-expression profiling of bortezomib added to standard chemoimmunotherapy for diffuse large B-cell lymphoma (REMoDL-B): an open-label, randomised, phase 3 trial.

    Get PDF
    BACKGROUND: Biologically distinct subtypes of diffuse large B-cell lymphoma can be identified using gene-expression analysis to determine their cell of origin, corresponding to germinal centre or activated B cell. We aimed to investigate whether adding bortezomib to standard therapy could improve outcomes in patients with these subtypes. METHODS: In a randomised evaluation of molecular guided therapy for diffuse large B-cell lymphoma with bortezomib (REMoDL-B), an open-label, adaptive, randomised controlled, phase 3 superiority trial, participants were recruited from 107 cancer centres in the UK (n=94) and Switzerland (n=13). Eligible patients had previously untreated, histologically confirmed diffuse large B-cell lymphoma with sufficient diagnostic material from initial biopsies for gene-expression profiling and pathology review; were aged 18 years or older; had ECOG performance status of 2 or less; had bulky stage I or stage II-IV disease requiring full-course chemotherapy; had measurable disease; and had cardiac, lung, renal, and liver function sufficient to tolerate chemotherapy. Patients initially received one 21-day cycle of standard rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP; rituximab 375 mg/m2, cyclophosphamide 750 mg/m2, doxorubicin 50 mg/m2, and vincristine 1·4 mg/m2 [to a maximum of 2 mg total dose] intravenously on day 1 of the cycle, and prednisolone 100 mg orally once daily on days 1-5). During this time, we did gene-expression profiling using whole genome cDNA-mediated annealing, selection, extension, and ligation assay of tissue from routine diagnostic biopsy samples to determine the cell-of-origin subtype of each participant (germinal centre B cell, activated B cell, or unclassified). Patients were then centrally randomly assigned (1:1) via a web-based system, with block randomisation stratified by international prognostic index score and cell-of-origin subtype, to continue R-CHOP alone (R-CHOP group; control), or with bortezomib (RB-CHOP group; experimental; 1·3 mg/m2 intravenously or 1·6 mg/m2 subcutaneously) on days 1 and 8 for cycles two to six. If RNA extracted from the diagnostic tissues was of insufficient quality or quantity, participants were given R-CHOP as per the control group. The primary endpoint was 30-month progression-free survival, for the germinal centre and activated B-cell population. The primary analysis was on the modified intention-to-treat population of activated and germinal centre B-cell population. Safety was assessed in all participants who were given at least one dose of study drug. We report the progression-free survival and safety outcomes for patients in the follow-up phase after the required number of events occurred. This study was registered at ClinicalTrials.gov, number NCT01324596, and recruitment and treatment has completed for all participants, with long-term follow-up ongoing. FINDINGS: Between June 2, 2011, and June 10, 2015, 1128 eligible patients were registered, of whom 918 (81%) were randomly assigned to receive treatment (n=459 to R-CHOP, n=459 to RB-CHOP), comprising 244 (26·6%) with activated B-cell disease, 475 (51·7%) with germinal centre B cell disease, and 199 (21·7%) with unclassified disease. At a median follow-up of 29·7 months (95% CI 29·0-32·0), we saw no evidence for a difference in progression-free survival in the combined germinal centre and activated B-cell population between R-CHOP and RB-CHOP (30-month progression-free survival 70·1%, 95% CI 65·0-74·7 vs 74·3%, 69·3-78·7; hazard ratio 0·86, 95% CI 0·65-1·13; p=0·28). The most common grade 3 or worse adverse event was haematological toxicity, reported in 178 (39·8%) of 447 patients given R-CHOP and 187 (42·1%) of 444 given RB-CHOP. However, RB-CHOP was not associated with increased haematological toxicity and 398 [87·1%] of 459 participants assigned to receive RB-CHOP completed six cycles of treatment. Grade 3 or worse neuropathy occurred in 17 (3·8%) patients given RB-CHOP versus eight (1·8%) given R-CHOP. Serious adverse events occurred in 190 (42·5%) patients given R-CHOP, including five treatment-related deaths, and 223 (50·2%) given RB-CHOP, including four treatment-related deaths. INTERPRETATION: This is the first large-scale study in diffuse large B-cell lymphoma to use real-time molecular characterisation for prospective stratification, randomisation, and subsequent analysis of biologically distinct subgroups of patients. The addition of bortezomib did not improve progression-free survival. FUNDING: Janssen-Cilag, Bloodwise, and Cancer Research UK.CRUK and Bloodwise
    corecore