76,968 research outputs found

    Synthesis and characterization of a novel Y-Fe phase via kinetic neutron diffraction

    Get PDF
    Kinetic in situ neutron diffraction has been used to study the crystallization of amorphous Y67Fe33. The results show that partial crystallization first occurs close to 300 ◦C where the Y phase is formed. The entire sample crystallizes at 390 ◦C and new Bragg peaks appear, signifying the formation of a novel Y–Fe phase. This new phase coexists with Y to 450 ◦C when the Bragg peaks associated with this phase rapidly decrease in intensity and YFe2 also coexisting with Y, emerges as the final crystallization product. Rietveld refinement shows that the new phase crystallizes into a hexagonal structure, space group P63/mmc, with a = 12.8893(7) Å, c = 11.7006(9) Å and γ = 120◦

    Property and cohabitation: understanding the Family Law (Scotland) Act 2006

    Get PDF

    Stochastic Master Equation Analysis of Optimized Three-Qubit Nondemolition Parity Measurement

    Get PDF
    We analyze a direct parity measurement of the state of three superconducting qubits in circuit quantum electrodynamics. The parity is inferred from a homodyne measurement of the reflected/transmitted microwave radiation and the measurement is direct in the sense that the parity is measured without the need for any quantum circuit operations or for ancilla qubits. Qubits are coupled to two resonant cavity modes, allowing the steady state of the emitted radiation to satisfy the necessary conditions to act as a pointer state for the parity. However, the transient dynamics violates these conditions and we analyze this detrimental effect and show that it can be overcome in the limit of weak measurement signal. Our analysis shows that, with a moderate degree of post-selection, it is possible to achieve post-measurement states with fidelity of order 95%. We believe that this type of measurement could serve as a benchmark for future error-correction protocols in a scalable architecture

    The Density of States and the Spectral Shift Density of Random Schroedinger Operators

    Full text link
    In this article we continue our analysis of Schroedinger operators with a random potential using scattering theory. In particular the theory of Krein's spectral shift function leads to an alternative construction of the density of states in arbitrary dimensions. For arbitrary dimension we show existence of the spectral shift density, which is defined as the bulk limit of the spectral shift function per unit interaction volume. This density equals the difference of the density of states for the free and the interaction theory. This extends the results previously obtained by the authors in one dimension. Also we consider the case where the interaction is concentrated near a hyperplane.Comment: 1 figur

    Dispersive Qubit Measurement by Interferometry with Parametric Amplifiers

    Get PDF
    We perform a detailed analysis of how an amplified interferometer can be used to enhance the quality of a dispersive qubit measurement, such as one performed on a superconducting transmon qubit, using homodyne detection on an amplified microwave signal. Our modeling makes a realistic assessment of what is possible in current circuit-QED experiments; in particular, we take into account the frequency-dependence of the qubit-induced phase shift for short microwaves pulses. We compare the possible signal-to-noise ratios obtainable with (single-mode) SU(1,1) interferometers with the current coherent measurement and find a considerable reduction in measurement error probability in an experimentally-accessible range of parameters

    Structural peculiarities of the Quadrantid meteor shower

    Get PDF
    Systematic radio observations to investigate the Quadrantid meteor shower structure are regularly carried out. They have now been conducted annually in the period of its maximum activity, January 1 to 6, since 1966. The latest results of these investigations are presented, on the basis of 1981 to 1984 data obtained using new equipment with a limiting sensitivity of +7.7 sup m which make it possible to draw some conclusions on the Quadrantids shower structure both for transverse and lengthwise directions

    New Kinetic Equation for Pair-annihilating Particles: Generalization of the Boltzmann Equation

    Get PDF
    A convenient form of kinetic equation is derived for pair annihilation of heavy stable particles relevant to the dark matter problem in cosmology. The kinetic equation thus derived extends the on-shell Boltzmann equation in a most straightforward way, including the off-shell effect. A detailed balance equation for the equilibrium abundance is further analyzed. Perturbative analysis of this equation supports a previous result for the equilibrium abundance using the thermal field theory, and gives the temperature power dependence of equilibrium value at low temperatures. Estimate of the relic abundance is possible using this new equilibrium abundance in the sudden freeze-out approximation.Comment: 19 pages, LATEX file with 2 PS figure
    • …
    corecore