131 research outputs found

    Effects of chronic exposure to the new insecticide sulfoxaflor in combination with a SDHI fungicide in a solitary bee

    Get PDF
    The recent EU ban of the three most widely used neonicotinoids (imidacloprid, thiamethoxam and clothianidin) to all outdoors applications has stimulated the introduction of new insecticides into the market. Sulfoxaflor is a new systemic insecticide that, like neonicotinoids, acts as a modulator of nicotinic acetylcholine receptors. In agro-environments, bees can be exposed to this compound via contaminated pollen and nectar for long periods of time. Therefore, it is important to assess the potential effects of chronic exposure to sulfoxaflor, alone and in combination with fungicides, on pollinators. In this study, we tested the effects of chronic exposure to two field concentrations of sulfoxaflor (20 and 100 ppb) alone and in combination with four concentrations of the fungicide fluxapyroxad (7500, 15,000, 30,000 and 60,000 ppb) on syrup consumption and longevity in females of the solitary bee Osmia bicornis L. Exposure to 20 ppb of sulfoxaflor, alone and in combination with the fungicide, stimulated syrup consumption, but did not affect longevity. In contrast, syrup consumption decreased in bees exposed to 100 ppb, all of which died after 2–6 days of exposure. We found no evidence of synergism between the two compounds at any of the two sulfoxaflor concentrations tested. Comparison of our findings with the literature, confirms that O. bicornis is more sensitive to sulfoxaflor than honey bees. Our results highlight the need to include different bee species in risk assessment schemes

    Dysregulation of the Autonomous Nervous System in Patients with Temporomandibular Disorder: A Pupillometric Study

    Get PDF
    The role of the autonomic nervous system (ANS) was recently investigated in Temporomandibular disorders (TMD). Several authors argue that in subjects with TMD there is a dysregulation of ANS. Recent literature support that Pupillometry is a simple non-invasive tool to study ANS. The aim of this study was to investigate the relationship between TMD and ANS activity using pupillometry recording in Infrared light at rest Mandible Position (RP); Infrared light at Forced Habitual Occlusion (FHO); Yellow-green light at RP; Yellow-green light at FHO. Forty female subjects were enrolled: 20 case patients showed TMD based on the Research Diagnostic Criteria for TMD, and 20 control patients, aged matched, had no signs or symptoms of TMD. Statistical analysis was performed on average pupil size. Ratio between pupil size in FHO and RP (FHO/RP ratio) and yellow-green and infrared (light/darkness ratio) lighting were carried out. Within group differences of pupil size and of "ratio" were analyzed using a paired t test, while differences of pupil size between groups were tested using an unpaired t test. Statistical comparisons between groups showed no significant differences of absolute values of pupil dimension in RP and FHO, both in yellow-green and in infrared lighting. In addition, there were no significant differences within groups comparing RP and FHO in yellow-green light. In within group comparison of pupil size, differences between RP and FHO were significant in infrared conditions. Control subjects increased, whereas TMD patients decreased pupil size at FHO in infrared lightening. FHO/RP ratio in darkness and light/darkness ratio in RP were significantly different between groups. Taken together, these data suggest that TMD subjects have an impairment of the sympathetic-adrenergic component of the ANS to be activated under stress. The present study provides preliminary pupillometric data confirming that adrenergic function is dysregulated in patients with TMD

    Environmental risks and challenges associated with neonicotinoid insecticides

    Get PDF
    Neonicotinoid use has increased rapidly in recent years, with a global shift toward insecticide applications as seed coatings rather than aerial spraying. While the use of seed coatings can lessen the amount of overspray and drift, the near universal and prophylactic use of neonicotinoid seed coatings on major agricultural crops has led to widespread detections in the environment (pollen, soil, water, honey). Pollinators and aquatic insects appear to be especially susceptible to the effects of neonicotinoids with current research suggesting that chronic sublethal effects are more prevalent than acute toxicity. Meanwhile, evidence of clear and consistent yield benefits from the use of neonicotinoids remains elusive for most crops. Future decisions on neonicotinoid use will benefit from weighing crop yield benefits versus environmental impacts to nontarget organisms and considering whether there are more environmentally benign alternatives

    Are Botanical Biopesticides Safe for Bees (Hymenoptera, Apoidea)?

    Get PDF
    The recent global decline in insect populations is of particular concern for pollinators. Wild and managed bees (Hymenoptera, Apoidea) are of primary environmental and economic importance because of their role in pollinating cultivated and wild plants, and synthetic pesticides are among the major factors contributing to their decline. Botanical biopesticides may be a viable alternative to synthetic pesticides in plant defence due to their high selectivity and short environmental persistence. In recent years, scientific progress has been made to improve the development and effectiveness of these products. However, knowledge regarding their adverse effects on the environment and non-target species is still scarce, especially when compared to that of synthetic products. Here, we summarize the studies concerning the toxicity of botanical biopesticides on the different groups of social and solitary bees. We highlight the lethal and sublethal effects of these products on bees, the lack of a uniform protocol to assess the risks of biopesticides on pollinators, and the scarcity of studies on specific groups of bees, such as the large and diverse group of solitary bees. Results show that botanical biopesticides cause lethal effects and a large number of sublethal effects on bees. However, the toxicity is limited when comparing the effects of these compounds with those of synthetic compounds
    • …
    corecore