38 research outputs found

    Liquid biopsy is a promising tool for genetic testing in idiopathic pulmonary fibrosis

    Get PDF
    Liquid biopsy, which allows the isolation of circulating cell-free (ccf) DNA from blood, is an emerging noninvasive tool widely used in oncology for diagnostic and prognosis purposes. Previous data have shown that serum cfDNA discriminates idiopathic pulmonary fibrosis (IPF) from other interstitial lung diseases. Our study aimed to measure plasma levels of ccfDNA in 59 consecutive therapy-naive and clinically stable IPF patients. The single nucleotide polymorphism (SNP) of the MUC5B gene promoter (rs35705950), associated with increased susceptibility of developing IPF, has been sought in plasma cfDNA and genomic DNA for comparison. Thirty-five age-and sex-matched healthy volunteers were recruited as the control group. Our results show that concentrations of small-size ccfDNA fragments were significantly higher in IPF patients than in controls and inversely correlated with lung function deterioration. Moreover, the median level of 104 ng/mL allowed discriminating patients with mild disease from those more advanced. The rs35705950 polymorphism was found in 11.8% of IPF patients and 8% of controls, with no differences. Complete concordance between ccfDNA and genomic DNA was detected in all control samples, while four out of seven IPF cases (57%) carrying the rs35705950 polymorphism were discordant from genomic DNA (7% of total IPF). Liquid biopsy is a suitable tool with optimistic expectations of application in the field of IPF. In analogy with cancer biology, finding some discrepancies between ccfDNA and genomic DNA in IPF patients suggests that the former may convey specific genetic information present in the primary site of the disease

    Use of hydroxychloroquine in hospitalised COVID-19 patients is associated with reduced mortality: Findings from the observational multicentre Italian CORIST study

    Get PDF
    Background: Hydroxychloroquine (HCQ) was proposed as potential treatment for COVID-19. Objective: We set-up a multicenter Italian collaboration to investigate the relationship between HCQ therapy and COVID-19 in-hospital mortality. Methods: In a retrospective observational study, 3,451 unselected patients hospitalized in 33 clinical centers in Italy, from February 19, 2020 to May 23, 2020, with laboratory-confirmed SARS-CoV-2 infection, were analyzed. The primary end-point in a time-to event analysis was in-hospital death, comparing patients who received HCQ with patients who did not. We used multivariable Cox proportional-hazards regression models with inverse probability for treatment weighting by propensity scores, with the addition of subgroup analyses. Results: Out of 3,451 COVID-19 patients, 76.3% received HCQ. Death rates (per 1,000 person-days) for patients receiving or not HCQ were 8.9 and 15.7, respectively. After adjustment for propensity scores, we found 30% lower risk of death in patients receiving HCQ (HR=0.70; 95%CI: 0.59 to 0.84; E-value=1.67). Secondary analyses yielded similar results. The inverse association of HCQ with inpatient mortality was particularly evident in patients having elevated C-reactive protein at entry. Conclusions: HCQ use was associated with a 30% lower risk of death in COVID-19 hospitalized patients. Within the limits of an observational study and awaiting results from randomized controlled trials, these data do not discourage the use of HCQ in inpatients with COVID-19

    Exercise induced changes in salivary and serum metabolome in trained standardbred, assessed by 1H-NMR

    No full text
    In the present study, data related to the metabolomics of saliva and serum in trained standardbred horses are provided for the first time. Metabolomic analysis allows to analyze all the metabolites within selected biofluids, providing a better understanding of biochemistry modifications related to exercise. On the basis of the current advances observed in metabolomic research on human athletes, we aimed to investigate the metabolites\u2019 profile of serum and saliva samples collected from healthy standardbred horses and the relationship with physical exercise. Twelve trained standardbred horses were sampled for blood and saliva before (T0) and immediately after (T1) standardized exercise. Metabolomic analysis of both samples was performed by1H-NMR spectroscopy. Forty-six metabolites in serum and 62 metabolites in saliva were detected, including alcohols, amino acids, organic acids, carbohydrates and purine derivatives. Twenty-six and 14 metabolites resulted to be significantly changed between T0 and T1 in serum and saliva, respectively. The findings of 2-hydroxyisobutyrate and 3-hydroxybutyrate in serum and GABA in equine saliva, as well as their modifications following exercise, provide new insights about the physiology of exercise in athletic horses. Glycerol might represent a novel biomarker for fitness evaluation in sport horses

    EGFR mutation detection by microfluidic technology: a validation study.

    No full text
    Advanced non-small cell lung cancer samples are tested for epidermal growth factor receptor (EGFR) gene mutations. Their detection by direct sequencing is time-consuming. Conversely, the length analysis of fluorescently labelled PCR products is easier. To avoid labelled primers and the automated capillary electrophoresis apparatus, we validated a fast and sensitive chip-based microfluidic technology. The limit of detection of fragment length assay on microfluidic device was 5%, more sensitive than direct sequencing (12.5%). The novel methodology showed high accuracy in the analysis of samples whose mutational status was known. The accuracy in quantifying mutated alleles (mA) was evaluated by PCR products subcloning; the mA% provided by direct sequencing of subcloned PCR products showed a close correlation with the mA% provided by the microfluidic technology for both exon 19 (R-2=0.9) and 21 (R-2=0.9). Microfluidic-based on-chip electrophoresis makes EGFR testing more rapid, sensitive and cost-effective

    Rapid On-site Molecular Evaluation in thyroid cytopathology: A same-day cytological and molecular diagnosis

    No full text
    Background: Thyroid fine-needle aspirates (FNAs) with undetermined morphology can be outsourced to centralized laboratories for comprehensive molecular profiling. When a local, rapid screening rules out easily detectable BRAF and NRAS mutations outsourcing is minimized, leading to cost savings. The fully automated Idylla technology, that does not require trained staff, is an emerging option. However, Idylla platform has only been validated to process formalin fixed paraffin embedded (FFPE) sections. Here we investigate whether also the FNA needle rinse could be genotyped by the same cytopathologist who performs the FNA, a procedure that can be termed rapid on site molecular evaluation (ROME). Methods: To validate this approach, the Idylla BRAF and NRAS Test was performed on the rinses from 25 simulated (bench-top) FNAs, in a first part of the study. Genotyping data were compared with those obtained on matched histological FFPE blocks. The second part of the study was carried out on 25 prospectively collected routine FNAs to assess the performance of the Idylla BRAF and NRAS assay against a gold standard real time polymerase chain reaction method. Results: Idylla NRAS-BRAF Mutation Test was performed on needle rinse as well as histological FFPE blocks. A sensitivity of 88.9%, a specificity of 100.0% were obtained comparing the Idylla NRAS-BRAF Mutation Test on needle rinse to the reference method. Conclusions: The FNA needle rinse can be directly genotyped. This obviates the need of cell block preparation, making possible a rapid combined morphological and molecular evaluation. Since DNA extraction is no longer necessary, the cytopathologist can perform ROME him/herself

    Age and multimorbidity predict death among COVID-19 patients: results of the SARS-RAS study of the Italian Society of Hypertension

    No full text
    Several factors have been proposed to explain the high death rate of the coronavirus disease 2019 (COVID-19) outbreak, including hypertension and hypertension-related treatment with Renin Angiotensin System inhibitors. Also, age and multimorbidity might be confounders. No sufficient data are available to demonstrate their independent role. We designed a cross-sectional, observational, multicenter, nationwide survey in Italy to verify whether renin-angiotensin system inhibitors are related to COVID-19 severe outcomes. We analyzed information from Italian patients diagnosed with COVID-19, admitted in 26 hospitals. One thousand five hundred ninety-one charts (male, 64.1%; 66±0.4 years) were recorded. At least 1 preexisting condition was observed in 73.4% of patients, with hypertension being the most represented (54.9%). One hundred eighty-eight deaths were recorded (11.8%; mean age, 79.6±0.9 years). In nonsurvivors, older age, hypertension, diabetes mellitus, chronic obstructive pulmonary disease, chronic kidney disease, coronary artery diseases, and heart failure were more represented than in survivors. The Charlson Comorbidity Index was significantly higher in nonsurvivors compared with survivors (4.3±0.15 versus 2.6±0.05; P<0.001). ACE (angiotensin-converting enzyme) inhibitors, diuretics, and β-blockers were more frequently used in nonsurvivors than in survivors. After correction by multivariate analysis, only age (P=0.0001), diabetes mellitus (P=0.004), chronic obstructive pulmonary disease (P=0.011), and chronic kidney disease (P=0.004) but not hypertension predicted mortality. Charlson Comorbidity Index, which cumulates age and comorbidities, predicts mortality with an exponential increase in the odds ratio by each point of score. In the COVID-19 outbreak, mortality is predicted by age and the presence of comorbidities. Our data do not support a significant interference of hypertension and antihypertensive therapy on COVID-19 lethality. Registration- URL: https://www.clinicaltrials.gov; Unique identifier: NCT04331574

    Harmonization of Next-Generation Sequencing Procedure in Italian Laboratories: A Multi-Institutional Evaluation of the SiRe® Panel

    No full text
    Background: Next-generation sequencing (NGS) needs to be validated and standardized to ensure that cancer patients are reliably selected for target treatments. In Italy, NGS is performed in several institutions and harmonization of wet and dry procedures is needed. To this end, a consortium of five different laboratories, covering the most part of the Italian peninsula, was constituted. A narrow gene panel (SiRe®) covering 568 clinically relevant mutations in six different genes (EGFR, KRAS, NRAS, BRAF, cKIT, and PDGFRα) with a predictive role for therapy selection in non-small cell lung cancer (NSCLC), gastrointestinal stromal tumor, colorectal carcinoma (CRC), and melanoma was evaluated in each participating laboratory. Methods: To assess the NGS inter-laboratory concordance, the SiRe® panel, with a related kit and protocol for library preparation, was used in each center to analyze a common set of 20 NSCLC and CRC routine samples. Concordance rate, in terms of mutation detected and relative allelic frequencies, was assessed. Then, each institution prospectively analyzed an additional set of 40 routine samples (for a total of 160 specimens) to assess the reproducibility of the NGS run parameters in each institution. Results: An inter-laboratory agreement of 100% was reached in analyzing the data obtained from the 20 common sample sets; the concordance rate of allelic frequencies distribution was 0.989. The prospective analysis of the run metric parameters obtained by each center locally showed that the analytical performance of the SiRe® panel in the different institutions was highly reproducible. Conclusions: The SiRe® panel represents a robust diagnostic tool to harmonize the NGS procedure in different Italian laboratories
    corecore