189 research outputs found

    Impact of Covid - 19 Pandemic on Orthopaedics at Northwell Health, New York.

    Get PDF
    The Novel Coronavirus (COVID-19) pandemicplaced an immense strain on healthcare systems and orthopedic surgeons across the world. To limit the spread, federal and state governments mandated the cancellation of all non-urgent surgical cases to address surging hospital admissions and manage workforce and resource reallocation. During the pandemic surge, thousands of surgical cancellations have been required. We outline our experience through the onset and advance of the surge, detail our incident response, and discuss the transition toward recovery

    An Approach for Securing Cloud-Based Wide Area Monitoring of Smart Grid Systems

    Get PDF
    Computing power and flexibility provided by cloud technologies represent an opportunity for Smart Grid applications, in general, and for Wide Area Monitoring Systems, in particular. Even though the cloud model is considered efficient for Smart Grids, it has stringent constraints in terms of security and reliability. An attack to the integrity or confidentiality of data may have a devastating impact for the system itself and for the surrounding environment. The main security risk is represented by malicious insiders, i.e., malevolent employees having privileged access to the hosting machines. In this paper, we evaluate a powerful hardening approach that could be leveraged to protect synchrophasor data processed at cloud level. In particular, we propose the use of homomorphic encryption to address risks related to malicious insiders. Our goal is to estimate the feasibility of such a security solution by verifying the compliance with frame rate requirements typical of synchrophasor standards

    A Secure Cloud-Based SCADA Application: the Use Case of a Water Supply Network

    Get PDF
    Cloud computing paradigm is gaining more and more momentum, to the extent that it is no more confined to its initial application domains, i.e. use by enterprises and businesses willing to lower costs or to increase computing capacity in a flexible manner. In particular, increasing interest is recently being paid to the huge potentials - in terms of benefits for the society at large - that might result from the adoption of cloud computing technology by critical infrastructure (CI) operators. This is of course putting special emphasis on the need for dependable and trustworthy security mechanisms in cloud technology based services, since a critical infrastructure is vital for essential functioning of a country. Incidental or deliberate damages to a CI have serious impacts on the economy, and possibly make essential services unavailable to the communities it serves. In this paper we present the proof-of concept of a cloud-based Water Supply Network Monitoring (WSNM) application, named RiskBuster (RB), that ensures the confidentiality and integrity of SCADA monitoring data collected from dam sensors and stored in the cloud by using the innovative Intel Software Guard eXtension (SGX) technology

    Evaluation of subsidence, chondrocyte survival and graft incorporation following autologous osteochondral transplantation

    Get PDF
    Contains fulltext : 95878.pdf (publisher's version ) (Open Access)PURPOSE: The aim of this study was to evaluate subsidence tendency, surface congruency, chondrocyte survival and plug incorporation after osteochondral transplantation in an animal model. The potential benefit of precise seating of the transplanted osteochondral plug on the recipient subchondral host bone ('bottoming') on these parameters was assessed in particular. METHODS: In 18 goats, two osteochondral autografts were harvested from the trochlea of the ipsilateral knee joint and inserted press-fit in a standardized articular cartilage defect in the medial femoral condyle. In half of the goats, the transplanted plugs were matched exactly to the depth of the recipient hole (bottomed plugs; n = 9), whereas in the other half of the goats, a gap of 2 mm was left between the plugs and the recipient bottom (unbottomed plugs; n = 9). After 6 weeks, all transplants were evaluated on gross morphology, subsidence, histology, and chondrocyte vitality. RESULTS: The macroscopic morphology scored significantly higher for surface congruency in bottomed plugs as compared to unbottomed reconstructions (P = 0.04). However, no differences in histological subsidence scoring between bottomed and unbottomed plugs were found. The transplanted articular cartilage of both bottomed and unbottomed plugs was vital. Only at the edges some matrix destaining, chondrocyte death and cluster formation was observed. At the subchondral bone level, active remodeling occurred, whereas integration at the cartilaginous surface of the osteochondral plugs failed to occur. Subchondral cysts were found in both groups. CONCLUSIONS: In this animal model, subsidence tendency was significantly lower after 'bottomed' versus 'unbottomed' osteochondral transplants on gross appearance, whereas for histological scoring no significant differences were encountered. Since the clinical outcome may be negatively influenced by subsidence, the use of 'bottomed' grafts is recommended for osteochondral transplantation in patients

    The clubfoot assessment protocol (CAP); description and reliability of a structured multi-level instrument for follow-up

    Get PDF
    BACKGROUND: In most clubfoot studies, the outcome instruments used are designed to evaluate classification or long-term cross-sectional results. Variables deal mainly with factors on body function/structure level. Wide scorings intervals and total sum scores increase the risk that important changes and information are not detected. Studies of the reliability, validity and responsiveness of these instruments are sparse. The lack of an instrument for longitudinal follow-up led the investigators to develop the Clubfoot Assessment Protocol (CAP). The aim of this article is to introduce and describe the CAP and evaluate the items inter- and intra reliability in relation to patient age. METHODS: The CAP was created from 22 items divided between body function/structure (three subgroups) and activity (one subgroup) levels according to the International Classification of Function, Disability and Health (ICF). The focus is on item and subgroup development. Two experienced examiners assessed 69 clubfeet in 48 children who had a median age of 2.1 years (range, 0 to 6.7 years). Both treated and untreated feet with different grades of severity were included. Three age groups were constructed for studying the influence of age on reliability. The intra- rater study included 32 feet in 20 children who had a median age of 2.5 years (range, 4 months to 6.8 years). The Unweighted Kappa statistics, percentage observer agreement, and amount of categories defined how reliability was to be interpreted. RESULTS: The inter-rater reliability was assessed as moderate to good for all but one item. Eighteen items had kappa values > 0.40. Three items varied from 0.35 to 0.38. The mean percentage observed agreement was 82% (range, 62 to 95%). Different age groups showed sufficient agreement. Intra- rater; all items had kappa values > 0.40 [range, 0.54 to 1.00] and a mean percentage agreement of 89.5%. Categories varied from 3 to 5. CONCLUSION: The CAP contains more detailed information than previous protocols. It is a multi-dimensional observer administered standardized measurement instrument with the focus on item and subgroup level. It can be used with sufficient reliability, independent of age, during the first seven years of childhood by examiners with good clinical experience. A few items showed low reliability, partly dependent on the child's age and /or varying professional backgrounds between the examiners. These items should be interpreted with caution, until further studies have confirmed the validity and sensitivity of the instrument

    Enhancing Biological and Biomechanical Fixation of Osteochondral Scaffold: A Grand Challenge

    Get PDF
    Osteoarthritis (OA) is a degenerative joint disease, typified by degradation of cartilage and changes in the subchondral bone, resulting in pain, stiffness and reduced mobility. Current surgical treatments often fail to regenerate hyaline cartilage and result in the formation of fibrocartilage. Tissue engineering approaches have emerged for the repair of cartilage defects and damages to the subchondral bones in the early stage of OA and have shown potential in restoring the joint's function. In this approach, the use of three-dimensional scaffolds (with or without cells) provides support for tissue growth. Commercially available osteochondral (OC) scaffolds have been studied in OA patients for repair and regeneration of OC defects. However, some controversial results are often reported from both clinical trials and animal studies. The objective of this chapter is to report the scaffolds clinical requirements and performance of the currently available OC scaffolds that have been investigated both in animal studies and in clinical trials. The findings have demonstrated the importance of biological and biomechanical fixation of the OC scaffolds in achieving good cartilage fill and improved hyaline cartilage formation. It is concluded that improving cartilage fill, enhancing its integration with host tissues and achieving a strong and stable subchondral bone support for overlying cartilage are still grand challenges for the early treatment of OA

    Meniscal tear—a feature of osteoarthritis

    Full text link
    corecore